Extremal metrics for the Q ‘-curvature in three dimensions
Author(s): Case, Jeffrey S; Hsiao, Chin-Yu; Yang, Paul C
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr10x51
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Case, Jeffrey S | - |
dc.contributor.author | Hsiao, Chin-Yu | - |
dc.contributor.author | Yang, Paul C | - |
dc.date.accessioned | 2019-08-29T17:01:54Z | - |
dc.date.available | 2019-08-29T17:01:54Z | - |
dc.date.issued | 2019 | en_US |
dc.identifier.citation | Case, Jeffrey S, Hsiao, Chin-Yu, Yang, Paul. (2019). Extremal metrics for the Q ‘-curvature in three dimensions. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 21 (585 - 626. doi:10.4171/JEMS/845 | en_US |
dc.identifier.issn | 1435-9855 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr10x51 | - |
dc.description.abstract | We construct contact forms with constant Q’-curvature on compact three-dimensional CR manifolds which admit a pseudo-Einstein contact form and satisfy some natural positivity conditions. These contact forms are obtained by minimizing the CR analogue of the II-functional from conformal geometry. Two crucial steps are to show that the P’-operator can be regarded as an elliptic pseudodifferential operator and to compute the leading order terms of the asymptotic expansion of the Green function for root P’. | en_US |
dc.format.extent | 585 - 626 | en_US |
dc.language | English | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | Extremal metrics for the Q ‘-curvature in three dimensions | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.4171/JEMS/845 | - |
dc.date.eissued | 2018-11-09 | en_US |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1511.05013.pdf | 454.08 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.