Variants of Dynamic Mode Decomposition: Boundary Condition, Koopman, and Fourier Analyses
Author(s): Chen, Kevin K; Tu, Jonathan H; Rowley, Clarence W
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1030v
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chen, Kevin K | - |
dc.contributor.author | Tu, Jonathan H | - |
dc.contributor.author | Rowley, Clarence W | - |
dc.date.accessioned | 2016-10-17T14:14:32Z | - |
dc.date.available | 2016-10-17T14:14:32Z | - |
dc.date.issued | 2012-12 | en_US |
dc.identifier.citation | Chen, Kevin K, Tu, Jonathan H, Rowley, Clarence W. "Variants of Dynamic Mode Decomposition: Boundary Condition, Koopman, and Fourier Analyses" Journal of Nonlinear Science, 22, (6), 887 - 915, doi:10.1007/s00332-012-9130-9 | en_US |
dc.identifier.issn | 0938-8974 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1030v | - |
dc.description.abstract | Dynamic mode decomposition (DMD) is an Arnoldi-like method based on the Koopman operator that analyzes empirical data, typically generated by nonlinear dynamics, and computes eigenvalues and eigenmodes of an approximate linear model. Without explicit knowledge of the dynamical operator, it extracts frequencies, growth rates, and spatial structures for each mode. We show that expansion in DMD modes is unique under certain conditions. When constructing mode-based reduced-order models of partial differential equations, subtracting a mean from the data set is typically necessary to satisfy boundary conditions. Subtracting the mean of the data exactly reduces DMD to the temporal discrete Fourier transform (DFT); this is restrictive and generally undesirable. On the other hand, subtracting an equilibrium point generally preserves the DMD spectrum and modes. Next, we introduce an “optimized” DMD that computes an arbitrary number of dynamical modes from a data set. Compared to DMD, optimized DMD is superior at calculating physically relevant frequencies, and is less numerically sensitive. We test these decomposition methods on data from a two-dimensional cylinder fluid flow at a Reynolds number of 60. Time-varying modes computed from the DMD variants yield low projection errors. | en_US |
dc.format.extent | 887 - 915 | en_US |
dc.relation.ispartof | Journal of Nonlinear Science | en_US |
dc.rights | This is the author’s final manuscript. All rights reserved to author(s). | en_US |
dc.title | Variants of Dynamic Mode Decomposition: Boundary Condition, Koopman, and Fourier Analyses | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1007/s00332-012-9130-9 | - |
dc.date.eissued | 2012-04-27 | en_US |
dc.identifier.eissn | 1432-1467 | - |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
RowleyJoNSV22-2012.pdf | 1.34 MB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.