Skip to main content

Dynamic mode decomposition for large and streaming datasets

Author(s): Hemati, Maziar S; Williams, Matthew O; Rowley, Clarence W

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1002j
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHemati, Maziar S-
dc.contributor.authorWilliams, Matthew O-
dc.contributor.authorRowley, Clarence W-
dc.date.accessioned2016-10-17T14:15:01Z-
dc.date.available2016-10-17T14:15:01Z-
dc.date.issued2014-11en_US
dc.identifier.citationHemati, Maziar S, Williams, Matthew O, Rowley, Clarence W. "Dynamic mode decomposition for large and streaming datasets" Physics of Fluids, (11), 26, 111701 - 111701, doi:10.1063/1.4901016en_US
dc.identifier.issn1070-6631-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1002j-
dc.description.abstractWe formulate a low-storage method for performing dynamic mode decomposition that can be updated inexpensively as new data become available; this formulation allows dynamical information to be extracted from large datasets and data streams. We present two algorithms: the first is mathematically equivalent to a standard “batch-processed” formulation; the second introduces a compression step that maintains computational efficiency, while enhancing the ability to isolate pertinent dynamical information from noisy measurements. Both algorithms reliably capture dominant fluid dynamic behaviors, as demonstrated on cylinder wake data collected from both direct numerical simulations and particle image velocimetry experiments.en_US
dc.format.extent111701-1 - 111701-6en_US
dc.relation.ispartofPhysics of Fluidsen_US
dc.rightsThis is the publisher’s version of the article (version of record). All rights reserved to the publisher. Please refer to the publisher's site for terms of use.en_US
dc.titleDynamic mode decomposition for large and streaming datasetsen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1063/1.4901016-
dc.identifier.eissn1089-7666-

Files in This Item:
File Description SizeFormat 
RowleyPoFV26-N11-2014.pdf358.93 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.