Skip to main content

Non-Local Euclidean Medians

Author(s): Chaudhury, Kunal N; Singer, Amit

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1zx63
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChaudhury, Kunal N-
dc.contributor.authorSinger, Amit-
dc.date.accessioned2019-08-29T17:02:03Z-
dc.date.available2019-08-29T17:02:03Z-
dc.date.issued2012-11en_US
dc.identifier.citationChaudhury, Kunal N, Singer, Amit. (2012). Non-Local Euclidean Medians. IEEE SIGNAL PROCESSING LETTERS, 19 (745 - 748. doi:10.1109/LSP.2012.2217329en_US
dc.identifier.issn1070-9908-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1zx63-
dc.description.abstractIn this letter, we note that the denoising performance of Non-Local Means (NLM) can be improved at large noise levels by replacing the mean by the Euclidean median. We call this new denoising algorithm the Non-Local Euclidean Medians (NLEM). At the heart of NLEM is the observation that the median is more robust to outliers than the mean. In particular, we provide a simple geometric insight that explains why NLEM performs better than NLM in the vicinity of edges, particularly at large noise levels. NLEM can be efficiently implemented using iteratively reweighted least squares, and its computational complexity is comparable to that of NLM. We provide some preliminary results to study the proposed algorithm and to compare it with NLM.en_US
dc.format.extent745 - 748en_US
dc.language.isoen_USen_US
dc.relation.ispartofIEEE SIGNAL PROCESSING LETTERSen_US
dc.rightsAuthor's manuscripten_US
dc.titleNon-Local Euclidean Mediansen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1109/LSP.2012.2217329-
dc.date.eissued2012-09-07en_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1207.3056v2.pdf965.22 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.