Skip to main content

Disjoint paths in tournaments

Author(s): Chudnovsky, Maria; Seymour, Paul D.; Scott, Alex

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1zw3g
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChudnovsky, Maria-
dc.contributor.authorSeymour, Paul D.-
dc.contributor.authorScott, Alex-
dc.date.accessioned2017-04-04T20:16:20Z-
dc.date.available2017-04-04T20:16:20Z-
dc.date.issued2015-01-22en_US
dc.identifier.citationM. Chudnovsky, A. Scott, amd P. Seymour, Disjoint paths in tournaments, Adv Math 270 (2015), 582–597.en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1zw3g-
dc.description.abstractGiven $k$ pairs of vertices $(s_i,t_i)$, $1\le i\le k$, of a digraph $G$, how can we test whether there exist $k$ vertex-disjoint directed paths from $s_i$ to $t_i$ for $1\le i\le k$? This is NP-complete in general digraphs, even for $k = 2$, but for $k=2$ there is a polynomial-time algorithm when $G$ is a tournament (or more generally, a semicomplete digraph), due to Bang-Jensen and Thomassen. Here we prove that for all fixed $k$ there is a polynomial-time algorithm to solve the problem when $G$ is semicomplete.en_US
dc.format.extent582–597en_US
dc.language.isoen_USen_US
dc.relation.ispartofAdvances in mathematics.en_US
dc.rightsAuthor's manuscripten_US
dc.titleDisjoint paths in tournamentsen_US
dc.typeJournal Articleen_US
dc.identifier.doi10.1016/j.aim.2014.11.011-
dc.date.eissued2014-12-01en_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1411.6226v1.pdf149.27 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.