A Precise Water Abundance Measurement for the Hot Jupiter WASP-43b
Author(s): Kreidberg, Laura; Bean, Jacob L; Désert, Jean-Michel; Line, Michael R; Fortney, Jonathan J.; et al
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1zq40
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kreidberg, Laura | - |
dc.contributor.author | Bean, Jacob L | - |
dc.contributor.author | Désert, Jean-Michel | - |
dc.contributor.author | Line, Michael R | - |
dc.contributor.author | Fortney, Jonathan J. | - |
dc.contributor.author | Madhusudhan, Nikku | - |
dc.contributor.author | Stevenson, Kevin B | - |
dc.contributor.author | Showman, Adam P | - |
dc.contributor.author | Charbonneau, David | - |
dc.contributor.author | McCullough, Peter R | - |
dc.contributor.author | Seager, Sara | - |
dc.contributor.author | Burrows, Adam S. | - |
dc.contributor.author | Henry, Gregory W | - |
dc.contributor.author | Williamson, Michael | - |
dc.contributor.author | Kataria, Tiffany | - |
dc.contributor.author | Homeier, Derek | - |
dc.date.accessioned | 2019-04-10T19:31:27Z | - |
dc.date.available | 2019-04-10T19:31:27Z | - |
dc.date.issued | 2014-10-01 | en_US |
dc.identifier.citation | Kreidberg, Laura, Bean, Jacob L, Désert, Jean-Michel, Line, Michael R, Fortney, Jonathan J, Madhusudhan, Nikku, Stevenson, Kevin B, Showman, Adam P, Charbonneau, David, McCullough, Peter R, Seager, Sara, Burrows, Adam, Henry, Gregory W, Williamson, Michael, Kataria, Tiffany, Homeier, Derek. (2014). A Precise Water Abundance Measurement for the Hot Jupiter WASP-43b. \apj, 793 (L27 - L27. doi:10.1088/2041-8205/793/2/L27 | en_US |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1zq40 | - |
dc.description.abstract | The water abundance in a planetary atmosphere provides a key constraint on the planet’s primordial origins becausewater ice is expected to play an important role in the core accretion model of planet formation. However, the water content of the solar system giant planets is not well known because water is sequestered in clouds deep in their atmospheres. By contrast, short-period exoplanets have such high temperatures that their atmospheres have water in the gas phase, making it possible to measure the water abundance for these objects. We present a precise determination of the water abundance in the atmosphere of the 2MJupshort-period exoplanet WASP-43b based on thermal emission and transmission spectroscopy measurements obtained with the Hubble Space Telescope.We find the water content is consistent with the value expected in a solar composition gas at planetary temperatures(0.4–3.5×solar at 1σconfidence). The metallicity of WASP-43b’s atmosphere suggested by this result extends the trend observed in the solar system of lower metal enrichment for higher planet masses. | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | Astrophysical Journal | en_US |
dc.rights | Final published version. This is an open access article. | en_US |
dc.title | A Precise Water Abundance Measurement for the Hot Jupiter WASP-43b | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1088/2041-8205/793/2/L27 | - |
dc.date.eissued | 2014-09-12 | en_US |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Kreidberg_2014_ApJL_793_L27.pdf | 1.89 MB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.