Basic models and questions in statistical network analysis
Author(s): Rácz, Miklos Z; Bubeck, S
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1zg4b
Abstract: | © 2017, Institute of Mathematical Statistics. All rights reserved. Extracting information from large graphs has become an important statistical problem since network data is now common in various fields. In this minicourse we will investigate the most natural statistical questions for three canonical probabilistic models of networks: (i) community detection in the stochastic block model, (ii) finding the embedding of a random geometric graph, and (iii) finding the original vertex in a preferential attachment tree. Along the way we will cover many interesting topics in probability theory such as Pólya urns, large deviation theory, concentration of measure in high dimension, entropic central limit theorems, and more. |
Publication Date: | 1-Jan-2017 |
Citation: | Rácz, MZ, Bubeck, S. (2017). Basic models and questions in statistical network analysis. Statistics Surveys, 11 (1 - 47. doi:10.1214/17-SS117 |
DOI: | doi:10.1214/17-SS117 |
EISSN: | 1935-7516 |
Pages: | 1 - 47 |
Type of Material: | Journal Article |
Journal/Proceeding Title: | Statistics Surveys |
Version: | Author's manuscript |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.