Skip to main content

Partial Consistency with Sparse Incidental Parameters.

Author(s): Fan, Jianqing; Tang, Runlong; Shi, Xiaofeng

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1zg3x
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFan, Jianqing-
dc.contributor.authorTang, Runlong-
dc.contributor.authorShi, Xiaofeng-
dc.date.accessioned2021-10-11T14:17:37Z-
dc.date.available2021-10-11T14:17:37Z-
dc.date.issued2018-05en_US
dc.identifier.citationFan, Jianqing, Tang, Runlong, Shi, Xiaofeng. (2018). Partial Consistency with Sparse Incidental Parameters.. Statistica Sinica, 28 (2633 - 2655. doi:10.5705/ss.202017.0027en_US
dc.identifier.issn1017-0405-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1zg3x-
dc.description.abstractPenalized estimation principle is fundamental to high-dimensional problems. In the literature, it has been extensively and successfully applied to various models with only structural parameters. As a contrast, in this paper, we first apply this penalization principle to a linear regression model with a finite-dimensional vector of structural parameters and a high-dimensional vector of sparse incidental parameters. For the estimators of the structural parameters, we derive their consistency and asymptotic normality, which reveals an oracle property. However, the penalized estimators for the incidental parameters possess only partial selection consistency but not consistency. This is an interesting partial consistency phenomenon: the structural parameters are consistently estimated while the incidental ones cannot. For the structural parameters, also considered is an alternative two-step penalized estimator, which has fewer possible asymptotic distributions and thus is more suitable for statistical inferences. We further extend the methods and results to the case where the dimension of the structural parameter vector diverges with but slower than the sample size. A data-driven approach for selecting a penalty regularization parameter is provided. The finite-sample performance of the penalized estimators for the structural parameters is evaluated by simulations and a real data set is analyzed.en_US
dc.format.extent2633 - 2655en_US
dc.languageengen_US
dc.language.isoen_USen_US
dc.relation.ispartofStatistica Sinicaen_US
dc.rightsAuthor's manuscripten_US
dc.titlePartial Consistency with Sparse Incidental Parameters.en_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.5705/ss.202017.0027-
dc.identifier.eissn1996-8507-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Partial consistency with sparse incidental parameters.pdf606.82 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.