Skip to main content

The spherical Slepian basis as a means to obtain spectral consistency between mean sea level and the geoid

Author(s): Slobbe, DC; Simons, Frederik J; Klees, Roland

To refer to this page use:
Abstract: The mean dynamic topography (MDT) can be computed as the difference between the mean sea level (MSL) and a gravimetric geoid. This requires that both data sets are spectrally consistent. In practice, it is quite common that the resolution of the geoid data is less than the resolution of the MSL data, hence, the latter need to be low-pass filtered before the MDT is computed. For this purpose conventional low-pass filters are inadequate, failing in coastal regions where they run into the undefined MSL signal on the continents. In this paper, we consider the use of a bandlimited, spatially concentrated Slepian basis to obtain a low-resolution approximation of the MSL signal. We compute Slepian functions for the oceans and parts of the oceans and compare the performance of calculating the MDT via this approach with other methods, in particular the iterative spherical harmonic approach in combination with Gaussian low-pass filtering, and various modifications. Based on the numerical experiments, we conclude that none of these methods provide a low-resolution MSL approximation at the sub-decimetre level. In particular, we show that Slepian functions are not appropriate basis functions for this problem, and a Slepian representation of the low-resolution MSL signal suffers from broadband leakage. We also show that a meaningful definition of a low-resolution MSL over incomplete spherical domains involves orthogonal basis functions with additional properties that Slepian functions do not possess. A low-resolution MSL signal, spectrally consistent with a given geoid model, is obtained by a suitable truncation of the expansions of the MSL signal in terms of these orthogonal basis functions. We compute one of these sets of orthogonal basis functions using the Gram–Schmidt orthogonalization for spherical harmonics. For the oceans, we could construct an orthogonal basis only for resolutions equivalent to a spherical harmonic degree 36. The computation of a basis with a higher resolution fails due to inherent instabilities. Regularization reduces the instabilities but destroys the orthogonality and, therefore, provides unrealistic low-resolution MSL approximations. More research is needed to solve the instability problem, perhaps by finding a different orthogonal basis that avoids it altogether.
Publication Date: 20-Mar-2012
Citation: Slobbe, D. C., Frederik J. Simons, and Roland Klees. "The spherical Slepian basis as a means to obtain spectral consistency between mean sea level and the geoid." Journal of Geodesy 86 (2012): 609-628. doi:10.1007/s00190-012-0543-x.
DOI: doi:10.1007/s00190-012-0543-x
ISSN: 0949-7714
EISSN: 1432-1394
Pages: 609 - 628
Type of Material: Journal Article
Journal/Proceeding Title: Journal of Geodesy
Version: Final published version. This is an open access article.

Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.