Skip to main content

Multivariate Regression with Calibration

Author(s): Liu, Han; Wang, Lie; Zhao, Tuo

To refer to this page use:
Abstract: We propose a new method named calibrated multivariate regression (CMR) for fitting high dimensional multivariate regression models. Compared to existing methods, CMR calibrates the regularization for each regression task with respect to its noise level so that it is simultaneously tuning insensitive and achieves an improved finite-sample performance. Computationally, we develop an efficient smoothed proximal gradient algorithm which has a worst-case iteration complexity O(1/ϵ), where ϵ is a pre-specified numerical accuracy. Theoretically, we prove that CMR achieves the optimal rate of convergence in parameter estimation. We illustrate the usefulness of CMR by thorough numerical simulations and show that CMR consistently outperforms other high dimensional multivariate regression methods. We also apply CMR on a brain activity prediction problem and find that CMR is as competitive as the handcrafted model created by human experts.
Publication Date: 2014
Citation: Liu, Han, Lie Wang, and Tuo Zhao. "Multivariate regression with calibration." In Advances in Neural Information Processing Systems 27, (2014): pp. 127-135.
ISSN: 1049-5258
Pages: 127 - 135
Type of Material: Conference Article
Journal/Proceeding Title: Advances in Neural Information Processing Systems
Version: Author's manuscript

Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.