Skip to main content

Phenomenology of fully many-body-localized systems

Author(s): Huse, David A; Nandkishore, Rahul; Oganesyan, Vadim

To refer to this page use:
Abstract: We consider fully many-body-localized systems, i.e., isolated quantum systems where all the many-body eigenstates of the Hamiltonian are localized. We define a sense in which such systems are integrable, with localized conserved operators. These localized operators are interacting pseudospins, and the Hamiltonian is such that unitary time evolution produces dephasing but not “flips” of these pseudospins. As a result, an initial quantum state of a pseudospin can in principle be recovered via (pseudospin) echo procedures. We discuss how the exponentially decaying interactions between pseudospins lead to logarithmic-in-time spreading of entanglement starting from nonentangled initial states. These systems exhibit multiple different length scales that can be defined from exponential functions of distance; we suggest that some of these decay lengths diverge at the phase transition out of the fully many-body-localized phase while others remain finite.
Publication Date: Nov-2014
Electronic Publication Date: 13-Nov-2014
Citation: Huse, David A, Nandkishore, Rahul, Oganesyan, Vadim. (2014). Phenomenology of fully many-body-localized systems. Physical Review B, 90 (17), 10.1103/PhysRevB.90.174202
DOI: doi:10.1103/PhysRevB.90.174202
ISSN: 1098-0121
EISSN: 1550-235X
Type of Material: Journal Article
Journal/Proceeding Title: Physical Review B
Version: Author's manuscript

Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.