Skip to main content

The Monte Carlo simulation of the Borexino detector

Author(s): Agostini, M; Altenmueller, K; Appel, S; Atroshchenko, V; Bagdasarian, Z; et al

To refer to this page use:
Abstract: We describe the Monte Carlo (MC) simulation of the Borexino detector and the agreement of its output with data. The Borexino MC “ab initio” simulates the energy loss of particles in all detector components and generates the resulting scintillation photons and their propagation within the liquid scintillator volume. The simulation accounts for absorption, reemission, and scattering of the optical photons and tracks them until they either are absorbed or reach the photocathode of one of the photomultiplier tubes. Photon detection is followed by a comprehensive simulation of the readout electronics response. The MC is tuned using data collected with radioactive calibration sources deployed inside and around the scintillator volume. The simulation reproduces the energy response of the detector, its uniformity within the fiducial scintillator volume relevant to neutrino physics, and the time distribution of detected photons to better than 1% between 100 keV and several MeV. The techniques developed to simulate the Borexino detector and their level of refinement are of possible interest to the neutrino community, especially for current and future large-volume liquid scintillator experiments such as Kamland-Zen, SNO+, and Juno. (C) 2017 Elsevier B.V. All rights reserved.
Publication Date: Jan-2018
Electronic Publication Date: 17-Oct-2017
Citation: Agostini, M, Altenmueller, K, Appel, S, Atroshchenko, V, Bagdasarian, Z, Basilico, D, Bellini, G, Benziger, J, Bick, D, Bonfini, G, Borodikhina, L, Bravo, D, Caccianiga, B, Calaprice, F, Caminata, A, Canepa, M, Caprioli, S, Carlini, M, Cavalcante, P, Chepurnov, A, Choi, K, D Angelo, D, Davini, S, Derbin, A, Ding, XF, Di Noto, L, Drachnev, I, Fomenko, K, Formozov, A, Franco, D, Froborg, F, Gabriele, F, Galbiati, C, Ghiano, C, Giammarchi, M, Goeger-Neff, M, Goretti, A, Gromov, M, Hagner, C, Houdy, T, Hungerford, E, Ianni, Aldo, Ianni, Andrea, Jany, A, Jeschke, D, Kobychev, V, Korablev, D, Korga, G, Kryn, D, Laubenstein, M, Litvinovich, E, Lombardi, F, Lombardi, P, Ludhova, L, Lukyanchenko, G, Machulin, I, Magnozzi, M, Manuzio, G, Marcocci, S, Martyn, J, Meroni, E, Meyer, M, Miramonti, L, Misiaszek, M, Muratova, V, Neumair, B, Oberauer, L, Opitz, B, Ortica, F, Pallavicini, M, Papp, L, Pocar, A, Ranucci, G, Razeto, A, Re, A, Romani, A, Roncin, R, Rossi, N, Schoenert, S, Semenov, D, Shakina, P, Skorokhvatov, M, Smirnov, O, Sotnikov, A, Stokes, LFF, Suvorov, Y, Tartaglia, R, Testera, G, Thurn, J, Toropova, M, Unzhakov, E, Vishneva, A, Vogelaar, RB, von Feilitzsch, F, Wang, H, Weinz, S, Wojcik, M, Wurm, M, Yokley, Z, Zaimidoroga, O, Zavatarelli, S, Zuber, K, Zuzel, G. (2018). The Monte Carlo simulation of the Borexino detector. ASTROPARTICLE PHYSICS, 97 (136 - 159. doi:10.1016/j.astropartphys.2017.10.003
DOI: doi:10.1016/j.astropartphys.2017.10.003
ISSN: 0927-6505
EISSN: 1873-2852
Pages: 136 - 159
Type of Material: Journal Article
Journal/Proceeding Title: ASTROPARTICLE PHYSICS
Version: Author's manuscript

Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.