To refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1xx5b
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Alon, Noga M. | - |
dc.contributor.author | Bukh, Boris | - |
dc.contributor.author | Polyanskiy, Yury | - |
dc.date.accessioned | 2019-08-29T17:02:11Z | - |
dc.date.available | 2019-08-29T17:02:11Z | - |
dc.date.issued | 2019-03 | en_US |
dc.identifier.citation | Alon, Noga, Bukh, Boris, Polyanskiy, Yury. (2019). List-Decodable Zero-Rate Codes. IEEE TRANSACTIONS ON INFORMATION THEORY, 65 (1657 - 1667. doi:10.1109/TIT.2018.2868957 | en_US |
dc.identifier.issn | 0018-9448 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1xx5b | - |
dc.description.abstract | We consider list decoding in the zero-rate regime for two cases-the binary alphabet and the spherical codes in Euclidean space. Specifically, we study the maximal tau is an element of[0, 1] for which there exists an arrangement of M halls of relative Hamming radius tau in the binary hypercube (of arbitrary dimension) with the property that no point of the latter is covered by L or more of them. As M -> infinity the maximal tau decreases to a well-known critical value tau(L). In this paper, we prove several results on the rate of this convergence. For the binary case, we show that the rate is Theta(M-1) when L is even, thus extending the classical results of Plotkin and Levenshtein for L = 2. For L = 3, the rate is shown to be Theta(M-(2/3)). For the similar question about sherical codes, we prove the rate is Omega(M-1) O(M-(2L/L2-L+2)). | en_US |
dc.format.extent | 1657 - 1667 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | IEEE TRANSACTIONS ON INFORMATION THEORY | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | List-Decodable Zero-Rate Codes | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1109/TIT.2018.2868957 | - |
dc.date.eissued | 2018-09-06 | en_US |
dc.identifier.eissn | 1557-9654 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1710.10663.pdf | 314.97 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.