Skip to main content

List-Decodable Zero-Rate Codes

Author(s): Alon, Noga M.; Bukh, Boris; Polyanskiy, Yury

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1xx5b
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAlon, Noga M.-
dc.contributor.authorBukh, Boris-
dc.contributor.authorPolyanskiy, Yury-
dc.date.accessioned2019-08-29T17:02:11Z-
dc.date.available2019-08-29T17:02:11Z-
dc.date.issued2019-03en_US
dc.identifier.citationAlon, Noga, Bukh, Boris, Polyanskiy, Yury. (2019). List-Decodable Zero-Rate Codes. IEEE TRANSACTIONS ON INFORMATION THEORY, 65 (1657 - 1667. doi:10.1109/TIT.2018.2868957en_US
dc.identifier.issn0018-9448-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1xx5b-
dc.description.abstractWe consider list decoding in the zero-rate regime for two cases-the binary alphabet and the spherical codes in Euclidean space. Specifically, we study the maximal tau is an element of[0, 1] for which there exists an arrangement of M halls of relative Hamming radius tau in the binary hypercube (of arbitrary dimension) with the property that no point of the latter is covered by L or more of them. As M -> infinity the maximal tau decreases to a well-known critical value tau(L). In this paper, we prove several results on the rate of this convergence. For the binary case, we show that the rate is Theta(M-1) when L is even, thus extending the classical results of Plotkin and Levenshtein for L = 2. For L = 3, the rate is shown to be Theta(M-(2/3)). For the similar question about sherical codes, we prove the rate is Omega(M-1) O(M-(2L/L2-L+2)).en_US
dc.format.extent1657 - 1667en_US
dc.language.isoen_USen_US
dc.relation.ispartofIEEE TRANSACTIONS ON INFORMATION THEORYen_US
dc.rightsAuthor's manuscripten_US
dc.titleList-Decodable Zero-Rate Codesen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1109/TIT.2018.2868957-
dc.date.eissued2018-09-06en_US
dc.identifier.eissn1557-9654-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1710.10663.pdf314.97 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.