Detecting gravitational waves from highly eccentric compact binaries
Author(s): Tai, Kai Sheng; McWilliams, Sean T; Pretorius, Frans
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1xx08
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tai, Kai Sheng | - |
dc.contributor.author | McWilliams, Sean T | - |
dc.contributor.author | Pretorius, Frans | - |
dc.date.accessioned | 2018-07-20T15:10:40Z | - |
dc.date.available | 2018-07-20T15:10:40Z | - |
dc.date.issued | 2014-11-15 | en_US |
dc.identifier.citation | Tai, Kai Sheng, McWilliams, Sean T, Pretorius, Frans. (2014). Detecting gravitational waves from highly eccentric compact binaries. PHYSICAL REVIEW D, 90 (10.1103/PhysRevD.90.103001 | en_US |
dc.identifier.issn | 2470-0010 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1xx08 | - |
dc.description.abstract | In dense stellar regions, highly eccentric binaries of black holes and neutron stars can form through various n-body interactions. Such a binary could emit a significant fraction of its binding energy in a sequence of largely isolated gravitational-wave bursts prior to merger. Given expected black hole and neutron star masses, many such systems will emit these repeated bursts at frequencies within the sensitive band of contemporary ground-based gravitational-wave detectors. Unfortunately, existing gravitational-wave searches are ill suited to detect these signals. In this work, we adapt a “power stacking” method to the detection of gravitational-wave signals from highly eccentric binaries. We implement this method as an extension of the Q transform, a projection onto a multiresolution basis of windowed complex exponentials that has previously been used to analyze data from the network of LIGO/Virgo detectors. Our method searches for excess power over an ensemble of time-frequency tiles. We characterize the performance of our method using Monte Carlo experiments with signals injected in simulated detector noise. Our results indicate that the power stacking method achieves substantially better sensitivity to eccentric binary signals than existing localized burst searches. | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | PHYSICAL REVIEW D | en_US |
dc.rights | Final published version. Article is made available in OAR by the publisher's permission or policy. | en_US |
dc.title | Detecting gravitational waves from highly eccentric compact binaries | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1103/PhysRevD.90.103001 | - |
dc.date.eissued | 2014-11-10 | en_US |
dc.identifier.eissn | 2470-0029 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
PhysRevD.90.103001.pdf | 3.37 MB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.