Spectroscopy of Twisted Bilayer Graphene Correlated Insulators
Author(s): Călugăru, Dumitru; Regnault, Nicolas; Oh, Myungchul; Nuckolls, Kevin P.; Wong, Dillon; et al
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1xw47w49
Abstract: | We analytically compute the scanning tunneling microscopy (STM) signatures of integer-filled correlated ground states of the magic angle twisted bilayer graphene (TBG) narrow bands. After experimentally validating the strong-coupling approach at ±4 electrons/moiré unit cell, we consider the spatial features of the STM signal for 14 different many-body correlated states and assess the possibility of Kekulé distortion (KD) emerging at the graphene lattice scale. Remarkably, we find that coupling the two opposite graphene valleys in the intervalley-coherent (IVC) TBG insulators does not always result in KD. As an example, we show that the Kramers IVC state and its nonchiral U (4) rotations do not exhibit any KD, while the time-reversal-symmetric IVC state does. Our results, obtained over a large range of energies and model parameters, show that the STM signal and Chern number of a state can be used to uniquely determine the nature of the TBG ground state. |
Publication Date: | 15-Sep-2022 |
DOI: | doi:10.1103/physrevlett.129.117602 |
ISSN: | 0031-9007 |
EISSN: | 1079-7114 |
Language: | en |
Type of Material: | Journal Article |
Journal/Proceeding Title: | Physical Review Letters |
Version: | Author's manuscript |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.