Skip to main content

Detecting an induced net subdivision

Author(s): Chudnovsky, Maria; Seymour, Paul D.; Trotignon, Nicolas

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1x96x
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChudnovsky, Maria-
dc.contributor.authorSeymour, Paul D.-
dc.contributor.authorTrotignon, Nicolas-
dc.date.accessioned2018-07-20T15:10:14Z-
dc.date.available2018-07-20T15:10:14Z-
dc.date.issued2013-09en_US
dc.identifier.citationChudnovsky, Maria, Seymour, Paul, Trotignon, Nicolas. (2013). Detecting an induced net subdivision. JOURNAL OF COMBINATORIAL THEORY SERIES B, 103 (630 - 641. doi:10.1016/j.jctb.2013.07.005en_US
dc.identifier.issn0095-8956-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1x96x-
dc.description.abstractA net is a graph consisting of a triangle C and three more vertices, each of degree one and with its neighbour in C, and all adjacent to different vertices of C. We give a polynomial-time algorithm to test whether an input graph has an induced subgraph which is a subdivision of a net. Unlike many similar questions, this does not seem to be solvable by an application of the “three-in-a-tree” subroutine. (C) 2013 Elsevier Inc. All rights reserved.en_US
dc.format.extent630 - 641en_US
dc.language.isoen_USen_US
dc.relation.ispartofJOURNAL OF COMBINATORIAL THEORY SERIES Ben_US
dc.rightsAuthor's manuscripten_US
dc.titleDetecting an induced net subdivisionen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1016/j.jctb.2013.07.005-
dc.date.eissued2013-08-23en_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
10.1.1.754.2407.pdf142.31 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.