Skip to main content

Totally disconnected groups (not) acting on two-manifolds

Author(s): Pardon, John V.

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1x921j51
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPardon, John V.-
dc.date.accessioned2023-12-28T15:04:48Z-
dc.date.available2023-12-28T15:04:48Z-
dc.date.issued2019en_US
dc.identifier.citationPardon, John. (2018). Totally disconnected groups (not) acting on two-manifolds. Proceedings of Symposia in Pure Mathematics, vol.102 (2019)en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1x921j51-
dc.description.abstractWe briefly survey the Hilbert–Smith Conjecture, and we include a proof of it in dimension two (where it is originally due to Montgomery–Zippin).en_US
dc.format.extent187-193en_US
dc.language.isoen_USen_US
dc.relation.ispartofProceedings of Symposia in Pure Mathematicsen_US
dc.rightsAuthor's manuscripten_US
dc.titleTotally disconnected groups (not) acting on two-manifoldsen_US
dc.typeConference Articleen_US
dc.identifier.doi10.1090/pspum/102/01809-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
13_hs2d.pdf113.66 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.