Skip to main content

Towards a cosmological neutrino mass detection

Author(s): Allison, R; Caucal, P; Calabrese, E; Dunkley, Jo; Louis, T

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1x73x
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAllison, R-
dc.contributor.authorCaucal, P-
dc.contributor.authorCalabrese, E-
dc.contributor.authorDunkley, Jo-
dc.contributor.authorLouis, T-
dc.date.accessioned2019-08-29T17:06:47Z-
dc.date.available2019-08-29T17:06:47Z-
dc.date.issued2015-12-15en_US
dc.identifier.citationAllison, R, Caucal, P, Calabrese, E, Dunkley, J, Louis, T. (2015). Towards a cosmological neutrino mass detection. PHYSICAL REVIEW D, 92 (10.1103/PhysRevD.92.123535en_US
dc.identifier.issn2470-0010-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1x73x-
dc.description.abstractFuture cosmological measurements should enable the sum of neutrino masses to be determined indirectly through their effects on the expansion rate of the Universe and the clustering of matter. We consider prospects for the gravitationally lensed cosmic microwave background (CMB) anisotropies and baryon acoustic oscillations (BAOs) in the galaxy distribution, examining how the projected uncertainty of approximate to 15 meV on the neutrino mass sum (a 4 sigma detection of the minimal mass) might be reached over the next decade. The current 1 sigma uncertainty of approximate to 103 meV (Planck-2015 + BAO-15) will be improved by upcoming “Stage-3” (S3) CMB experiments (S3 + BAO-15: 44 meV), then upcoming BAO measurements (S3 + DESI: 22 meV), and planned next-generation “ Stage 4” (S4) CMB experiments (S4 + DESI: 15-19 meV, depending on angular range). An improved optical depth measurement is important: the projected neutrino mass uncertainty increases to 26 meV if S4 is limited to l > 20 and combined with current large-scale polarization data. Looking beyond Lambda CDM, including curvature uncertainty increases the forecast mass error by approximate to 50% for S4 + DESI, and more than doubles the error with a two-parameter dark-energy equation of state. Complementary low-redshift probes including galaxy lensing will play a role in distinguishing between massive neutrinos and a departure from a w = -1, flat geometry.en_US
dc.language.isoen_USen_US
dc.relation.ispartofPHYSICAL REVIEW Den_US
dc.rightsFinal published version. Article is made available in OAR by the publisher's permission or policy.en_US
dc.titleTowards a cosmological neutrino mass detectionen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1103/PhysRevD.92.123535-
dc.date.eissued2015-12-23en_US
dc.identifier.eissn2470-0029-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
PhysRevD.92.123535.pdf765.88 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.