Skip to main content

Cosmic-ray-induced filamentation instability in collisionless shocks

Author(s): Caprioli, D; Spitkovsky, Anatoly

To refer to this page use:
Abstract: We used unprecedentedly large two-dimensional and three-dimensional hybrid (kinetic ions - fluid electrons) simulations of non-relativistic collisionless strong shocks in order to investigate the effects of self-consistently accelerated ions on the overall shock dynamics. The current driven by suprathermal particles streaming ahead of the shock excites modes transverse to the background magnetic field. The Lorentz force induced by these self-amplified fields tends to excavate tubular, underdense, magnetic-field-depleted cavities that are advected with the fluid and perturb the shock surface, triggering downstream turbulent motions. These motions further amplify the magnetic field, up to factors of 50-100 in knot-like structures. Once downstream, the cavities tend to be filled by hot plasma plumes that compress and stretch the magnetic fields in elongated filaments; this effect is particularly evident if the shock propagates parallel to the background field. Highly magnetized knots and filaments may provide explanations for the rapid X-ray variability observed in RX J1713.7-3946 and for the regular pattern of X-ray bright stripes detected in Tycho’s supernova remnant.
Publication Date: 15-Mar-2013
Electronic Publication Date: 1-Mar-2013
Citation: Caprioli, D, Spitkovsky, A. (2013). Cosmic-ray-induced filamentation instability in collisionless shocks. Astrophysical Journal Letters, 765 (1), 10.1088/2041-8205/765/1/L20
DOI: doi:10.1088/2041-8205/765/1/L20
ISSN: 2041-8205
EISSN: 2041-8213
Related Item:
Type of Material: Journal Article
Journal/Proceeding Title: Astrophysical Journal Letters
Version: Final published version. Article is made available in OAR by the publisher's permission or policy.

Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.