Skip to main content

Testing whether all eigenstates obey the eigenstate thermalization hypothesis

Author(s): Kim, Hyungwon; Ikeda, Tatsuhiko N; Huse, David A

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1x31k
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKim, Hyungwon-
dc.contributor.authorIkeda, Tatsuhiko N-
dc.contributor.authorHuse, David A-
dc.date.accessioned2017-04-04T20:15:41Z-
dc.date.available2017-04-04T20:15:41Z-
dc.date.issued2014-11en_US
dc.identifier.citationKim, Hyungwon, Ikeda, Tatsuhiko N, Huse, David A. (2014). Testing whether all eigenstates obey the eigenstate thermalization hypothesis. Physical Review E, 90 (5), 10.1103/PhysRevE.90.052105en_US
dc.identifier.issn1539-3755-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1x31k-
dc.description.abstractWe ask whether the eigenstate thermalization hypothesis (ETH) is valid in a strong sense: in the limit of an infinite system, every eigenstate is thermal. We examine expectation values of few-body operators in highly excited many-body eigenstates and search for “outliers,” the eigenstates that deviate the most from ETH. We use exact diagonalization of two one-dimensional nonintegrable models: a quantum Ising chain with transverse and longitudinal fields, and hard-core bosons at half-filling with nearest- and next-nearest-neighbor hopping and interaction. We show that even the most extreme outliers appear to obey ETH as the system size increases and thus provide numerical evidences that support ETH in this strong sense. Finally, periodically driving the Ising Hamiltonian, we show that the eigenstates of the corresponding Floquet operator obey ETH even more closely. We attribute this better thermalization to removing the constraint of conservation of the total energy.en_US
dc.language.isoen_USen_US
dc.relation.ispartofPhysical Review Een_US
dc.rightsAuthor's manuscripten_US
dc.titleTesting whether all eigenstates obey the eigenstate thermalization hypothesisen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1103/PhysRevE.90.052105-
dc.date.eissued2014-11-06en_US
dc.identifier.eissn1550-2376-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1408.0535v2.pdf1.45 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.