Skip to main content

Human CTP synthase filament structure reveals the active enzyme conformation

Author(s): Lynch, Eric M; Hicks, Derrick R; Shepherd, Matthew; Endrizzi, James A; Maker, Allison; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1x20s
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLynch, Eric M-
dc.contributor.authorHicks, Derrick R-
dc.contributor.authorShepherd, Matthew-
dc.contributor.authorEndrizzi, James A-
dc.contributor.authorMaker, Allison-
dc.contributor.authorHansen, Jesse M-
dc.contributor.authorBarry, Rachael M-
dc.contributor.authorGitai, Zemer-
dc.contributor.authorBaldwin, Enoch P-
dc.contributor.authorKollman, Justin M-
dc.date.accessioned2020-02-25T20:11:36Z-
dc.date.available2020-02-25T20:11:36Z-
dc.date.issued2017-05-01en_US
dc.identifier.citationLynch, Eric M, Hicks, Derrick R, Shepherd, Matthew, Endrizzi, James A, Maker, Allison, Hansen, Jesse M, Barry, Rachael M, Gitai, Zemer, Baldwin, Enoch P, Kollman, Justin M. (2017). Human CTP synthase filament structure reveals the active enzyme conformation. Nature Structural & Molecular Biology, 24 (6), 507 - 514. doi:10.1038/nsmb.3407en_US
dc.identifier.issn1545-9993-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1x20s-
dc.description.abstractThe universally conserved enzyme CTP synthase (CTPS) forms filaments in bacteria and eukaryotes. In bacteria polymerization inhibits CTPS activity and is required for nucleotide homeostasis. Here we show that human CTPS polymerization increases catalytic activity. The cryoEM structures of bacterial and human CTPS filaments differ dramatically in overall architecture and in the conformation of the CTPS protomer, explaining the divergent consequences of polymerization on activity. The filament structure of human CTPS is the first full-length structure of the human enzyme and reveals a novel active conformation. The filament structures elucidate allosteric mechanisms of assembly and regulation that rely on a conserved conformational equilibrium. This may provide a mechanism for increasing human CTPS activity in response to metabolic state, and challenges the assumption that metabolic filaments are generally storage forms of inactivated enzymes. Allosteric regulation of CTPS polymerization by ligands likely represents a fundamental mechanism underlying assembly of other metabolic filaments.en_US
dc.format.extent1 - 20en_US
dc.language.isoenen_US
dc.relation.ispartofNature Structural & Molecular Biologyen_US
dc.rightsAuthor's manuscripten_US
dc.titleHuman CTP synthase filament structure reveals the active enzyme conformationen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1038/nsmb.3407-
dc.date.eissued2017-05-01en_US
dc.identifier.eissn1545-9985-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Human CTP synthase filament structure reveals the active enzyme conformation.pdf908.5 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.