Skip to main content

Dissipative models generalizing the 2D Navier-Stokes and the surface quasi-geostrophic equations

Author(s): Chae, Dongho; Constantin, Peter; Wu, Jiahong

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1x07x
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChae, Dongho-
dc.contributor.authorConstantin, Peter-
dc.contributor.authorWu, Jiahong-
dc.date.accessioned2017-11-21T19:19:26Z-
dc.date.available2017-11-21T19:19:26Z-
dc.date.issued2012en_US
dc.identifier.citationChae, D., Constantin, P., & Wu, J. (2012). Dissipative models generalizing the 2D Navier-Stokes and surface quasi-geostrophic equations. Indiana University Mathematics Journal, 1997-2018.en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1x07x-
dc.description.abstractThis paper is devoted to the global (in time) regularity problem for a family of active scalar equations with fractional dissipation. Each component of the velocity field $u$ is determined by the active scalar $\theta$ through $\mathcal{R} \Lambda^{-1} P(\Lambda) \theta$ where $\mathcal{R}$ denotes a Riesz transform, $\Lambda=(-\Delta)^{1/2}$ and $P(\Lambda)$ represents a family of Fourier multiplier operators. The 2D Navier-Stokes vorticity equations correspond to the special case $P(\Lambda)=I$ while the surface quasi-geostrophic (SQG) equation to $P(\Lambda) =\Lambda$. We obtain the global regularity for a class of equations for which $P(\Lambda)$ and the fractional power of the dissipative Laplacian are required to satisfy an explicit condition. In particular, the active scalar equations with any fractional dissipation and with $P(\Lambda)= (\log(I-\Delta))^\gamma$ for any $\gamma>0$ are globally regular.en_US
dc.format.extent1997-2018en_US
dc.language.isoenen_US
dc.relation.ispartofIndiana University Mathematics Journalen_US
dc.rightsAuthor's manuscripten_US
dc.titleDissipative models generalizing the 2D Navier-Stokes and the surface quasi-geostrophic equationsen_US
dc.typeJournal Articleen_US
dc.identifier.doi10.1512/iumj.2012.61.4756-
dc.date.eissued2012en_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1011.0171v1.pdf256.72 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.