Skip to main content

Diffusion Approximations for Online Principal Component Estimation and Global Convergence

Author(s): Li, Chris Junchi; Wang, Mengdi; Liu, Han; Zhang, Tong

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1wv1k
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, Chris Junchi-
dc.contributor.authorWang, Mengdi-
dc.contributor.authorLiu, Han-
dc.contributor.authorZhang, Tong-
dc.date.accessioned2020-02-24T21:50:21Z-
dc.date.available2020-02-24T21:50:21Z-
dc.date.issued2017en_US
dc.identifier.citationLi, Chris Junchi, Mengdi Wang, Han Liu, and Tong Zhang. "Diffusion approximations for online principal component estimation and global convergence." In Advances in Neural Information Processing Systems, (2017): 645-655.en_US
dc.identifier.issn1049-5258-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1wv1k-
dc.description.abstractIn this paper, we propose to adopt the diffusion approximation tools to study the dynamics of Oja's iteration which is an online stochastic gradient method for the principal component analysis. Oja's iteration maintains a running estimate of the true principal component from streaming data and enjoys less temporal and spatial complexities. We show that the Oja's iteration for the top eigenvector generates a continuous-state discrete-time Markov chain over the unit sphere. We characterize the Oja's iteration in three phases using diffusion approximation and weak convergence tools. Our three-phase analysis further provides a finite-sample error bound for the running estimate, which matches the minimax information lower bound for PCA under the additional assumption of bounded samples.en_US
dc.format.extent646 - 656en_US
dc.language.isoen_USen_US
dc.relation.ispartof31st Conference on Neural Information Processing Systems (NIPS 2017)en_US
dc.rightsAuthor's manuscripten_US
dc.titleDiffusion Approximations for Online Principal Component Estimation and Global Convergenceen_US
dc.typeConference Articleen_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/conference-proceedingen_US

Files in This Item:
File Description SizeFormat 
oA_DiffusionApproximationsOnlinePrincipalComponentEstimationGlobalConvergence.pdf1.29 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.