Loading [Contrib]/a11y/accessibility-menu.js
Skip to main content

Optimal decoding of information from a genetic network

Author(s): Petkova, Mariela D; Tkačik, Gašper; Bialek, William; Wieschaus, Eric F; Gregor, Thomas

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1wp9t704
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPetkova, Mariela D-
dc.contributor.authorTkačik, Gašper-
dc.contributor.authorBialek, William-
dc.contributor.authorWieschaus, Eric F-
dc.contributor.authorGregor, Thomas-
dc.date.accessioned2025-02-26T20:00:59Z-
dc.date.available2025-02-26T20:00:59Z-
dc.date.issued2019-02-07en_US
dc.identifier.citationPetkova, Mariela D, Tkačik, Gašper, Bialek, William, Wieschaus, Eric F, Gregor, Thomas. (2016). Optimal decoding of information from a genetic network. Cell, 176 (844 - ?en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1wp9t704-
dc.description.abstractGene expression levels carry information about signals that have functional significance for the organism. Using the gap gene network in the fruit fly embryo as an example, we show how this information can be decoded, building a dictionary that translates expression levels into a map of implied positions. The optimal decoder makes use of graded variations in absolute expression level, resulting in positional estimates that are precise to ~1% of the embryo's length. We test this optimal decoder by analyzing gap gene expression in embryos lacking some of the primary maternal inputs to the network. The resulting maps are distorted, and these distortions predict, with no free parameters, the positions of expression stripes for the pair-rule genes in the mutant embryos.en_US
dc.format.extent844 -en_US
dc.relation.ispartofCellen_US
dc.rightsAuthor's manuscripten_US
dc.titleOptimal decoding of information from a genetic networken_US
dc.typeJournal Articleen_US
dc.date.eissued2019-02-07en_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1612.08084v1.pdf8.58 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.