Skip to main content

Estimating False Discovery Proportion Under Arbitrary Covariance Dependence

Author(s): Fan, Jianqing; Han, Xu; Gu, Weijie

To refer to this page use:
Abstract: Multiple hypothesis testing is a fundamental problem in high-dimensional inference, with wide applications in many scientific fields. In genome-wide association studies, tens of thousands of tests are performed simultaneously to find if any single-nucleotide polymorphisms (SNPs) are associated with some traits and those tests are correlated. When test statistics are correlated, false discovery control becomes very challenging under arbitrary dependence. In this article, we propose a novel method-based on principal factor approximation-that successfully subtracts the common dependence and weakens significantly the correlation structure, to deal with an arbitrary dependence structure. We derive an approximate expression for false discovery proportion (FDP) in large-scale multiple testing when a common threshold is used and provide a consistent estimate of realized FDP. This result has important applications in controlling false discovery rate and FDP. Our estimate of realized FDP compares favorably with Efron's approach, as demonstrated in the simulated examples. Our approach is further illustrated by some real data applications. We also propose a dependence-adjusted procedure that is more powerful than the fixed-threshold procedure. Supplementary material for this article is available online.
Publication Date: Sep-2012
Electronic Publication Date: 20-Aug-2012
Citation: Fan, Jianqing, Han, Xu, Gu, Weijie. (2012). Estimating False Discovery Proportion Under Arbitrary Covariance Dependence. Journal of the American Statistical Association, 107 (499), 1019 - 1035. doi:10.1080/01621459.2012.720478
DOI: doi:10.1080/01621459.2012.720478
ISSN: 0162-1459
EISSN: 1537-274X
Pages: 1019 - 1035
Type of Material: Journal Article
Journal/Proceeding Title: Journal of the American Statistical Association
Version: Author's manuscript

Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.