Skip to main content


Author(s): Kim, Jeong-Gyu; Kim, Woong-Tae; Ostriker, Eve C

To refer to this page use:
Abstract: Dynamical expansion of H II regions around star clusters plays a key role in dispersing the surrounding dense gas and therefore in limiting the efficiency of star formation in molecular clouds. We use a semianalytic method and numerical simulations to explore expansion of spherical dusty H II regions and surrounding neutral shells and the resulting cloud disruption. Our model for shell expansion adopts the static solutions of Draine for dusty H II regions and considers the contact outward forces on the shell due to radiation and thermal pressures, as well as the inward gravity from the central star and the shell itself. We show that the internal structure we adopt and the shell evolution from the semianalytic approach are in good agreement with the results of numerical simulations. Strong radiation pressure in the interior controls the shell expansion indirectly by enhancing the density and pressure at the ionization front. We calculate the minimum star formation efficiency epsilon(min) required for cloud disruption as a function of the cloud’s total mass and mean surface density. Within the adopted spherical geometry, we find that typical giant molecular clouds in normal disk galaxies have epsilon(min) less than or similar to 10%, with comparable gas and radiation pressure effects on shell expansion. Massive cluster-forming clumps require a significantly higher efficiency of epsilon(min) greater than or similar to 50% for disruption, produced mainly by radiation-driven expansion. The disruption time is typically of the order of a free-fall timescale, suggesting that the cloud disruption occurs rapidly once a sufficiently luminous H II region is formed. We also discuss limitations of the spherical idealization.
Publication Date: 10-Mar-2016
Electronic Publication Date: 8-Mar-2016
Citation: Kim, Jeong-Gyu, Kim, Woong-Tae, Ostriker, Eve C. (2016). DISRUPTION OF MOLECULAR CLOUDS BY EXPANSION OF DUSTY H II REGIONS. ASTROPHYSICAL JOURNAL, 819 (10.3847/0004-637X/819/2/137
DOI: doi:10.3847/0004-637X/819/2/137
ISSN: 0004-637X
EISSN: 1538-4357
Type of Material: Journal Article
Journal/Proceeding Title: ASTROPHYSICAL JOURNAL
Version: Final published version. Article is made available in OAR by the publisher's permission or policy.

Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.