Skip to main content

Solving or resolving global tomographic models with spherical wavelets, and the scale and sparsity of seismic heterogeneity

Author(s): Simons, Frederik J; Loris, Ignace; Nolet, Guust; Daubechies, Ingrid C; Voronin, S; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1wm13t0v
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSimons, Frederik J-
dc.contributor.authorLoris, Ignace-
dc.contributor.authorNolet, Guust-
dc.contributor.authorDaubechies, Ingrid C-
dc.contributor.authorVoronin, S-
dc.contributor.authorJudd, JS-
dc.contributor.authorVetter, PA-
dc.contributor.authorCharléty, J-
dc.contributor.authorVonesch, C-
dc.date.accessioned2022-01-25T14:59:22Z-
dc.date.available2022-01-25T14:59:22Z-
dc.date.issued2011-11-01en_US
dc.identifier.citationSimons, Frederik J., Ignace Loris, Guust Nolet, Ingrid C. Daubechies, S. Voronin, J. S. Judd, P.A. Vetter, J. Charléty, and C. Vonesch. "Solving or resolving global tomographic models with spherical wavelets, and the scale and sparsity of seismic heterogeneity." Geophysical Journal International 187, no. 2 (2011): 969-988. doi:10.1111/j.1365-246X.2011.05190.x.en_US
dc.identifier.issn0956-540X-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1wm13t0v-
dc.description.abstractWe propose a class of spherical wavelet bases for the analysis of geophysical models and for the tomographic inversion of global seismic data. Its multiresolution character allows for modelling with an effective spatial resolution that varies with position within the Earth. Our procedure is numerically efficient and can be implemented with parallel computing. We discuss two possible types of discrete wavelet transforms in the angular dimension of the cubed sphere. We describe benefits and drawbacks of these constructions and apply them to analyse the information in two published seismic wave speed models of the mantle, using the statistics of wavelet coefficients across scales. The localization and sparsity properties of wavelet bases allow finding a sparse solution to inverse problems by iterative minimization of a combination of the l2 norm of the data residuals and the l1 norm of the model wavelet coefficients. By validation with realistic synthetic experiments we illustrate the likely gains from our new approach in future inversions of finite-frequency seismic data.en_US
dc.format.extent969 - 988en_US
dc.language.isoen_USen_US
dc.relation.ispartofGeophysical Journal Internationalen_US
dc.rightsFinal published version. Article is made available in OAR by the publisher's permission or policy.en_US
dc.titleSolving or resolving global tomographic models with spherical wavelets, and the scale and sparsity of seismic heterogeneityen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1111/j.1365-246X.2011.05190.x-
dc.identifier.eissn1365-246X-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Solving_resolving_global_tomographic_models_spherical_wavelets_scale_sparsity_seismic_heterogeneity.pdf2.22 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.