Skip to main content

Near-optimal stochastic approximation for online principal component estimation

Author(s): Li, CJ; Wang, Mengdi; Liu, Han; Zhang, T

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1wf8x
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, CJ-
dc.contributor.authorWang, Mengdi-
dc.contributor.authorLiu, Han-
dc.contributor.authorZhang, T-
dc.date.accessioned2020-04-09T17:09:01Z-
dc.date.available2020-04-09T17:09:01Z-
dc.date.issued2018en_US
dc.identifier.citationLi, Chris Junchi, Mengdi Wang, Han Liu, and Tong Zhang. "Near-optimal stochastic approximation for online principal component estimation." Mathematical Programming 167, no. 1 (2018): 75-97. doi:10.1007/s10107-017-1182-zen_US
dc.identifier.issn0025-5610-
dc.identifier.urihttps://arxiv.org/abs/1603.05305-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1wf8x-
dc.description.abstractPrincipal component analysis (PCA) has been a prominent tool for high-dimensional data analysis. Online algorithms that estimate the principal component by processing streaming data are of tremendous practical and theoretical interests. Despite its rich applications, theoretical convergence analysis remains largely open. In this paper, we cast online PCA into a stochastic nonconvex optimization problem, and we analyze the online PCA algorithm as a stochastic approximation iteration. The stochastic approximation iteration processes data points incrementally and maintains a running estimate of the principal component. We prove for the first time a nearly optimal finite-sample error bound for the online PCA algorithm. Under the subgaussian assumption, we show that the finite-sample error bound closely matches the minimax information lower bound.en_US
dc.format.extent75 - 97en_US
dc.language.isoen_USen_US
dc.relation.ispartofMathematical Programmingen_US
dc.rightsAuthor's manuscripten_US
dc.titleNear-optimal stochastic approximation for online principal component estimationen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1007/s10107-017-1182-z-
dc.identifier.eissn1436-4646-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
ApproximatComponentEstimation.pdf495.79 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.