Monodromy defects from hyperbolic space
Author(s): Giombi, Simone; Helfenberger, Elizabeth; Ji, Ziming; Khanchandani, Himanshu
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1w950n7z
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Giombi, Simone | - |
dc.contributor.author | Helfenberger, Elizabeth | - |
dc.contributor.author | Ji, Ziming | - |
dc.contributor.author | Khanchandani, Himanshu | - |
dc.date.accessioned | 2024-04-23T14:54:35Z | - |
dc.date.available | 2024-04-23T14:54:35Z | - |
dc.date.issued | 2022-02-07 | en_US |
dc.identifier.citation | Giombi, Simone, Helfenberger, Elizabeth, Ji, Ziming, Khanchandani, Himanshu. (2022). Monodromy defects from hyperbolic space. Journal of High Energy Physics, 2022 (2), 10.1007/jhep02(2022)041 | en_US |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1w950n7z | - |
dc.description.abstract | <jats:title>A<jats:sc>bstract</jats:sc> </jats:title><jats:p>We study monodromy defects in <jats:italic>O</jats:italic>(<jats:italic>N</jats:italic>) symmetric scalar field theories in <jats:italic>d</jats:italic> dimensions. After a Weyl transformation, a monodromy defect may be described by placing the theory on <jats:italic>S</jats:italic><jats:sup>1</jats:sup> × <jats:italic>H</jats:italic><jats:sup><jats:italic>d−</jats:italic>1</jats:sup>, where <jats:italic>H</jats:italic><jats:sup><jats:italic>d−</jats:italic>1</jats:sup> is the hyperbolic space, and imposing on the fundamental fields a twisted periodicity condition along <jats:italic>S</jats:italic><jats:sup>1</jats:sup>. In this description, the codimension two defect lies at the boundary of <jats:italic>H</jats:italic><jats:sup><jats:italic>d−</jats:italic>1</jats:sup>. We first study the general monodromy defect in the free field theory, and then develop the large <jats:italic>N</jats:italic> expansion of the defect in the interacting theory, focusing for simplicity on the case of <jats:italic>N</jats:italic> complex fields with a one-parameter monodromy condition. We also use the <jats:italic>ϵ</jats:italic>-expansion in <jats:italic>d</jats:italic> = 4 <jats:italic>− ϵ</jats:italic>, providing a check on the large <jats:italic>N</jats:italic> approach. When the defect has spherical geometry, its expectation value is a meaningful quantity, and it may be obtained by computing the free energy of the twisted theory on <jats:italic>S</jats:italic><jats:sup>1</jats:sup> × <jats:italic>H</jats:italic><jats:sup><jats:italic>d−</jats:italic>1</jats:sup>. It was conjectured that the logarithm of the defect expectation value, suitably multiplied by a dimension dependent sine factor, should decrease under a defect RG flow. We check this conjecture in our examples, both in the free and interacting case, by considering a defect RG flow that corresponds to imposing alternate boundary conditions on one of the low-lying Kaluza-Klein modes on <jats:italic>H</jats:italic><jats:sup><jats:italic>d−</jats:italic>1</jats:sup>. We also show that, adapting standard techniques from the AdS/CFT literature, the <jats:italic>S</jats:italic><jats:sup>1</jats:sup> × <jats:italic>H</jats:italic><jats:sup><jats:italic>d−</jats:italic>1</jats:sup> setup is well suited to the calculation of the defect CFT data, and we discuss various examples, including one-point functions of bulk operators, scaling dimensions of defect operators, and four-point functions of operator insertions on the defect.</jats:p> | en_US |
dc.language | en | en_US |
dc.relation.ispartof | Journal of High Energy Physics | en_US |
dc.rights | Final published version. This is an open access article. | en_US |
dc.subject | Conformal Field Theory, AdS-CFT Correspondence, Renormalization Group | en_US |
dc.title | Monodromy defects from hyperbolic space | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1007/jhep02(2022)041 | - |
dc.date.eissued | 2022-02-07 | en_US |
dc.identifier.eissn | 1029-8479 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
JHEP02(2022)041.pdf | 1.08 MB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.