Skip to main content
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1w369
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGubser, Steven S-
dc.contributor.authorKnaute, Johannes-
dc.contributor.authorParikh, Sarthak-
dc.contributor.authorSamberg, Andreas-
dc.contributor.authorWitaszczyk, Przemek-
dc.date.accessioned2017-11-21T19:43:18Z-
dc.date.available2017-11-21T19:43:18Z-
dc.date.issued2017-06en_US
dc.identifier.citationGubser, Steven S, Knaute, Johannes, Parikh, Sarthak, Samberg, Andreas, Witaszczyk, Przemek. (2017). p-Adic AdS/CFT. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 353 (1019 - 1059. doi:10.1007/s00220-016-2813-6en_US
dc.identifier.issn0010-3616-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1w369-
dc.description.abstractWe construct a p-adic analog to AdS/CFT, where an unramified extension of the p-adic numbers replaces Euclidean space as the boundary and a version of the Bruhat-Tits tree replaces the bulk. Correlation functions are computed in the simple case of a single massive scalar in the bulk, with results that are strikingly similar to ordinary holographic correlation functions when expressed in terms of local zeta functions. We give some brief discussion of the geometry of p-adic chordal distance and of Wilson loops. Our presentation includes an introduction to p-adic numbers.en_US
dc.format.extent1019 - 1059en_US
dc.language.isoenen_US
dc.relation.ispartofCOMMUNICATIONS IN MATHEMATICAL PHYSICSen_US
dc.rightsAuthor's manuscripten_US
dc.titlep-Adic AdS/CFTen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1007/s00220-016-2813-6-
dc.date.eissued2017-01-16en_US
dc.identifier.eissn1432-0916-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1605.01061v2.pdf2.96 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.