Skip to main content

On the global existence for the Muskat problem

Author(s): Constantin, Peter; Cordoba, Diego; Gancedo, Francisco; Strain, Robert M

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1w065
Full metadata record
DC FieldValueLanguage
dc.contributor.authorConstantin, Peter-
dc.contributor.authorCordoba, Diego-
dc.contributor.authorGancedo, Francisco-
dc.contributor.authorStrain, Robert M-
dc.date.accessioned2017-11-21T19:19:52Z-
dc.date.available2017-11-21T19:19:52Z-
dc.date.issued2013en_US
dc.identifier.citationConstantin, Peter, Cordoba, Diego, Gancedo, Francisco, Strain, Robert M. (2013). On the global existence for the Muskat problem. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 15 (201 - 227. doi:10.4171/JEMS/360en_US
dc.identifier.issn1435-9855-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1w065-
dc.description.abstractThe Muskat problem models the dynamics of the interface between two incompressible immiscible fluids with different constant densities. In this work we prove three results. First we prove an L2(R) maximum principle, in the form of a new "log'' conservation law which is satisfied by the equation (1) for the interface. Our second result is a proof of global existence for unique strong solutions if the initial data is smaller than an explicitly computable constant, for instance ∥f∥1≤1/5. Previous results of this sort used a small constant ϵ≪1 which was not explicit. Lastly, we prove a global existence result for Lipschitz continuous solutions with initial data that satisfy ∥f0∥L∞<∞ and ∥∂xf0∥L∞<1. We take advantage of the fact that the bound ∥∂xf0∥L∞<1 is propagated by solutions, which grants strong compactness properties in comparison to the log conservation law.en_US
dc.format.extent201 - 227en_US
dc.language.isoenen_US
dc.relation.ispartofJOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETYen_US
dc.rightsAuthor's manuscripten_US
dc.titleOn the global existence for the Muskat problemen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.4171/JEMS/360-
dc.date.eissued2013en_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1007.3744v1.pdf206.6 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.