Knot lattice homology in L-spaces
Author(s): Ozsvath, Peter Steven; Stipsicz, Andras I.; Szabo, Zoltan
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1vm4t
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ozsvath, Peter Steven | - |
dc.contributor.author | Stipsicz, Andras I. | - |
dc.contributor.author | Szabo, Zoltan | - |
dc.date.accessioned | 2019-04-05T18:32:10Z | - |
dc.date.available | 2019-04-05T18:32:10Z | - |
dc.date.issued | 2016-01 | en_US |
dc.identifier.citation | Ozsvath, Peter, Stipsicz, Andras I., Szabo, Zoltan. (2016). Knot lattice homology in L-spaces. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 25, doi:10.1142/S0218216516500036 | en_US |
dc.identifier.issn | 0218-2165 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1vm4t | - |
dc.description.abstract | We show that the knot lattice homology of a knot in an L-space is chain homotopy equivalent to the knot Floer homology of the same knot (viewed these invariants as filtered chain complexes over the polynomial ring Z/2Z[U]). Suppose that G is a negative definite plumbing tree which contains a vertex w such that G - w is a union of rational graphs. Using the identification of knot homologies we show that for such graphs the lattice homology HF-(G) is isomorphic to the Heegaard Floer homology HF-(Y-G) of the corresponding rational homology sphere Y-G. | en_US |
dc.format.extent | 1 - 27 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | Knot lattice homology in L-spaces | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1142/S0218216516500036 | - |
dc.identifier.eissn | 1793-6527 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1207.3889.pdf | 260.91 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.