Skip to main content

A Floquet model for the many-body localization transition

Author(s): Zhang, Liangsheng; Khemani, Vedika; Huse, David A

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1vg7j
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhang, Liangsheng-
dc.contributor.authorKhemani, Vedika-
dc.contributor.authorHuse, David A-
dc.date.accessioned2017-04-04T20:13:35Z-
dc.date.available2017-04-04T20:13:35Z-
dc.date.issued2016-12en_US
dc.identifier.citationZhang, Liangsheng, Khemani, Vedika, Huse, David A. (2016). A Floquet model for the many-body localization transition. Physical Review B, 94 (22), 10.1103/PhysRevB.94.224202en_US
dc.identifier.issn2469-9950-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1vg7j-
dc.description.abstractThe nature of the dynamical quantum phase transition between the many-body localized (MBL) phase and the thermal phase remains an open question, and one line of attack on this problem is to explore this transition numerically in finite-size systems. To maximize the contrast between the MBL phase and the thermal phase in such finite-size systems, we argue one should choose a Floquet model with no local conservation laws and rapid thermalization to “infinite temperature” in the thermal phase. Here we introduce and explore such a Floquet spin chain model, and show that standard diagnostics of the MBL-to-thermal transition behave well in this model even at modest sizes. We also introduce a physically motivated spacetime correlation function which peaks at the transition in the Floquet model, but is strongly affected by conservation laws in Hamiltonian models.en_US
dc.language.isoenen_US
dc.relation.ispartofPhysical Review Ben_US
dc.rightsAuthor's manuscripten_US
dc.titleA Floquet model for the many-body localization transitionen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1103/PhysRevB.94.224202-
dc.date.eissued2016-12-12en_US
dc.identifier.eissn2469-9969-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1609.00390v1.pdf1.02 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.