To refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1vf1p
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ache, Antonio G | - |
dc.contributor.author | Chang, Sun-Yung A. | - |
dc.date.accessioned | 2019-10-09T19:47:56Z | - |
dc.date.available | 2019-10-09T19:47:56Z | - |
dc.date.issued | 2017-10-01 | en_US |
dc.identifier.citation | Ache, Antonio G, Chang, Sun-Yung Alice. (2017). SOBOLEV TRACE INEQUALITIES OF ORDER FOUR. DUKE MATHEMATICAL JOURNAL, 166 (2719 - 2748. doi:10.1215/00127094-2017-0014 | en_US |
dc.identifier.issn | 0012-7094 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1vf1p | - |
dc.description.abstract | We establish sharp trace Sobolev inequalities of order four on Euclidean d-balls for d >= 4. When d = 4, our inequality generalizes the classical second-order LebedevMilin inequality on Euclidean 2-balls. Our method relies on the use of scattering theory on hyperbolic d-balls. As an application, we characterize the extremal metric of the main term in the log-determinant formula corresponding to the conformal Laplacian coupled with the boundary Robin operator on Euclidean 4-balls, which surprisingly is not the flat metric on the ball. | en_US |
dc.format.extent | 2719 - 2748 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | DUKE MATHEMATICAL JOURNAL | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | SOBOLEV TRACE INEQUALITIES OF ORDER FOUR | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1215/00127094-2017-0014 | - |
dc.date.eissued | 2017-08-14 | en_US |
dc.identifier.eissn | 1547-7398 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1509.06069.pdf | 305.13 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.