Skip to main content

SOBOLEV TRACE INEQUALITIES OF ORDER FOUR

Author(s): Ache, Antonio G; Chang, Sun-Yung A.

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1vf1p
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAche, Antonio G-
dc.contributor.authorChang, Sun-Yung A.-
dc.date.accessioned2019-10-09T19:47:56Z-
dc.date.available2019-10-09T19:47:56Z-
dc.date.issued2017-10-01en_US
dc.identifier.citationAche, Antonio G, Chang, Sun-Yung Alice. (2017). SOBOLEV TRACE INEQUALITIES OF ORDER FOUR. DUKE MATHEMATICAL JOURNAL, 166 (2719 - 2748. doi:10.1215/00127094-2017-0014en_US
dc.identifier.issn0012-7094-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1vf1p-
dc.description.abstractWe establish sharp trace Sobolev inequalities of order four on Euclidean d-balls for d >= 4. When d = 4, our inequality generalizes the classical second-order LebedevMilin inequality on Euclidean 2-balls. Our method relies on the use of scattering theory on hyperbolic d-balls. As an application, we characterize the extremal metric of the main term in the log-determinant formula corresponding to the conformal Laplacian coupled with the boundary Robin operator on Euclidean 4-balls, which surprisingly is not the flat metric on the ball.en_US
dc.format.extent2719 - 2748en_US
dc.language.isoen_USen_US
dc.relation.ispartofDUKE MATHEMATICAL JOURNALen_US
dc.rightsAuthor's manuscripten_US
dc.titleSOBOLEV TRACE INEQUALITIES OF ORDER FOURen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1215/00127094-2017-0014-
dc.date.eissued2017-08-14en_US
dc.identifier.eissn1547-7398-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1509.06069.pdf305.13 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.