Skip to main content

Single-particle excitations in disordered Weyl fluids

Author(s): Pixley, JH; Chou, Yang-Zhi; Goswami, Pallab; Huse, David A; Nandkishore, Rahul; et al

To refer to this page use:
Abstract: We theoretically study the single-particle Green function of a three-dimensional disordered Weyl semimetal using a combination of techniques. These include analytic T-matrix and renormalization group methods with complementary regimes of validity and an exact numerical approach based on the kernel polynomial technique. We show that at any nonzero disorder, Weyl excitations are not ballistic: They instead have a nonzero linewidth that for weak short-range disorder arises from nonperturbative resonant impurity scattering. Perturbative approaches find a quantum critical point between a semimetal and a metal at a finite disorder strength, but this transition is avoided due to nonperturbative effects. At moderate disorder strength and intermediate energies the avoided quantum critical point renormalizes the scaling of single-particle properties. In this regime we compute numerically the anomalous dimension of the fermion field and find eta = 0.13 +/- 0.04, which agrees well with a renormalization group analysis (eta = 0.125). Our predictions can be directly tested by ARPES and STM measurements in samples dominated by neutral impurities.
Publication Date: 1-Jun-2017
Electronic Publication Date: 15-Jun-2017
Citation: Pixley, JH, Chou, Yang-Zhi, Goswami, Pallab, Huse, David A, Nandkishore, Rahul, Radzihovsky, Leo, Das Sarma, S. (2017). Single-particle excitations in disordered Weyl fluids. PHYSICAL REVIEW B, 95 (10.1103/PhysRevB.95.235101
DOI: doi:10.1103/PhysRevB.95.235101
ISSN: 2469-9950
EISSN: 2469-9969
Type of Material: Journal Article
Journal/Proceeding Title: PHYSICAL REVIEW B
Version: Final published version. Article is made available in OAR by the publisher's permission or policy.

Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.