Skip to main content

Nonuniqueness of weak solutions to the Navier-Stokes equation

Author(s): Buckmaster, Tristan J.; Vicol, Vlad

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1vb2z
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBuckmaster, Tristan J.-
dc.contributor.authorVicol, Vlad-
dc.date.accessioned2019-08-29T17:01:30Z-
dc.date.available2019-08-29T17:01:30Z-
dc.date.issued2019-01en_US
dc.identifier.citationBuckmaster, Tristan, Vicol, Vlad. (2019). Nonuniqueness of weak solutions to the Navier-Stokes equation. ANNALS OF MATHEMATICS, 189 (101 - 144. doi:10.4007/annals.2019.189.1.3en_US
dc.identifier.issn0003-486X-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1vb2z-
dc.description.abstractFor initial datum of finite kinetic energy, Leray has proven in 1934 that there exists at least one global in time finite energy weak solution of the 3D Navier-Stokes equations. In this paper we prove that weak solutions of the 3D Navier-Stokes equations are not unique in the class of weak solutions with finite kinetic energy. Moreover, we prove that Holder continuous dissipative weak solutions of the 3D Euler equations may be obtained as a strong vanishing viscosity limit of a sequence of finite energy weak solutions of the 3D Navier-Stokes equations.en_US
dc.format.extent101 - 144en_US
dc.language.isoen_USen_US
dc.relation.ispartofANNALS OF MATHEMATICSen_US
dc.rightsAuthor's manuscripten_US
dc.titleNonuniqueness of weak solutions to the Navier-Stokes equationen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.4007/annals.2019.189.1.3-
dc.date.eissued2019-01-11en_US
dc.identifier.eissn1939-8980-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1709.10033.pdf435.24 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.