Skip to main content

Reward-Risk Ratios

Author(s): Cheridito, Patrick; Kromer, Eduard

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1tz9b
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCheridito, Patrick-
dc.contributor.authorKromer, Eduard-
dc.date.accessioned2021-10-11T14:17:22Z-
dc.date.available2021-10-11T14:17:22Z-
dc.date.issued2013-12en_US
dc.identifier.citationCheridito, Patrick, and Eduard Kromer. "Reward-risk ratios." Journal of Investment Strategies 3, no. 01 (2013): 3-18. doi: 10.21314/JOIS.2013.022en_US
dc.identifier.issn2047-1238-
dc.identifier.urihttps://papers.ssrn.com/sol3/papers.cfm?abstract_id=2144185&download=yes-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1tz9b-
dc.description.abstractWe introduce three new families of reward-risk ratios, study their properties and compare them with existing examples. All ratios in the three families are monotonic and quasiconcave, which means that they prefer more to less and encourage diversification. Members of the second family are also scale-invariant. The third family is a subset of the second, and all its members depend only on the distribution of a return. In the second part of the paper, we provide an overview of existing reward-risk ratios and discuss their properties. For instance, we show that, like the Sharpe ratio, every reward-deviation ratio violates the monotonicity property.en_US
dc.format.extent3 - 18en_US
dc.language.isoen_USen_US
dc.relation.ispartofJournal of Investment Strategiesen_US
dc.rightsAuthor's manuscripten_US
dc.titleReward-Risk Ratiosen_US
dc.typeJournal Articleen_US
dc.identifier.doi10.21314/JOIS.2013.022-
dc.identifier.eissn2047-1246-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
RiskRewardRatio.pdf287.42 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.