Skip to main content

Accelerated Path-Following Iterative Shrinkage Thresholding Algorithm With Application to Semiparametric Graph Estimation

Author(s): Zhao, Tuo; Liu, Han

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1tv3q
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhao, Tuo-
dc.contributor.authorLiu, Han-
dc.date.accessioned2020-04-06T17:08:20Z-
dc.date.available2020-04-06T17:08:20Z-
dc.date.issued2016-10en_US
dc.identifier.citationZhao, Tuo, Liu, Han. (2016). Accelerated Path-Following Iterative Shrinkage Thresholding Algorithm With Application to Semiparametric Graph Estimation. Journal of Computational and Graphical Statistics, 25 (4), 1272 - 1296. doi:10.1080/10618600.2016.1164533en_US
dc.identifier.issn1061-8600-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1tv3q-
dc.description.abstractWe propose an accelerated path-following iterative shrinkage thresholding algorithm (APISTA) for solving high dimensional sparse nonconvex learning problems. The main difference between APISTA and the path-following iterative shrinkage thresholding algorithm (PISTA) is that APISTA exploits an additional coordinate descent subroutine to boost the computational performance. Such a modification, though simple, has profound impact: APISTA not only enjoys the same theoretical guarantee as that of PISTA, i.e., APISTA attains a linear rate of convergence to a unique sparse local optimum with good statistical properties, but also significantly outperforms PISTA in empirical benchmarks. As an application, we apply APISTA to solve a family of nonconvex optimization problems motivated by estimating sparse semiparametric graphical models. APISTA allows us to obtain new statistical recovery results which do not exist in the existing literature. Thorough numerical results are provided to back up our theory.en_US
dc.format.extent1272 - 1296en_US
dc.language.isoen_USen_US
dc.relation.ispartofJournal of Computational and Graphical Statisticsen_US
dc.rightsAuthor's manuscripten_US
dc.titleAccelerated Path-Following Iterative Shrinkage Thresholding Algorithm With Application to Semiparametric Graph Estimationen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1080/10618600.2016.1164533-
dc.date.eissued2016-11-10en_US
dc.identifier.eissn1537-2715-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
AM_Accelerated_Path_following_Iterative_Shrinkage.pdf2.66 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.