Skip to main content

The equidistribution of lattice shapes of rings of integers in cubic, quartic, and quintic number fields

Author(s): Bhargava, Manjul; Harron, Piper

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1th13
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBhargava, Manjul-
dc.contributor.authorHarron, Piper-
dc.date.accessioned2017-11-21T18:57:55Z-
dc.date.available2017-11-21T18:57:55Z-
dc.date.issued2016-06en_US
dc.identifier.citationBhargava, Manjul, Harron, Piper. (2016). The equidistribution of lattice shapes of rings of integers in cubic, quartic, and quintic number fields. COMPOSITIO MATHEMATICA, 152 (1111 - 1120). doi:10.1112/S0010437X16007260en_US
dc.identifier.issn0010-437X-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1th13-
dc.description.abstractFor n = 3, 4, and 5, we prove that, when S n -number fields of degree n are ordered by their absolute discriminants, the lattice shapes of the rings of integers in these fields become equidistributed in the space of lattices.en_US
dc.format.extent1111 - 1120en_US
dc.language.isoenen_US
dc.relation.ispartofCOMPOSITIO MATHEMATICAen_US
dc.rightsAuthor's manuscripten_US
dc.titleThe equidistribution of lattice shapes of rings of integers in cubic, quartic, and quintic number fieldsen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1112/S0010437X16007260-
dc.date.eissued2016-04-15en_US
dc.identifier.eissn1570-5846-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1309.2025v2.pdf179.86 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.