Skip to main content

Principal component analysis on non-gaussian dependent data

Author(s): Han, F; Liu, H

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1tc6n
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHan, F-
dc.contributor.authorLiu, H-
dc.date.accessioned2021-10-11T14:16:54Z-
dc.date.available2021-10-11T14:16:54Z-
dc.date.issued2013en_US
dc.identifier.citationHan, Fang, and Han Liu. "Principal component analysis on non-Gaussian dependent data." In International Conference on Machine Learning 1, 28 (2013): pp. 240-248.en_US
dc.identifier.issn2640-3498-
dc.identifier.urihttp://proceedings.mlr.press/v28/han13.html-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1tc6n-
dc.description.abstractIn this paper, we analyze the performance of a semiparametric principal component analysis named Copula Component Analysis (COCA) (Han & Liu, 2012) when the data are dependent. The semiparametric model assumes that, after unspecified marginally monotone transformations, the distributions are multivariate Gaussian. We study the scenario where the observations are drawn from non-i.i.d. processes (m-dependency or a more general ϕ-mixing case). We show that COCA can allow weak dependence. In particular, we provide the generalization bounds of convergence for both support recovery and parameter estimation of COCA for the dependent data. We provide explicit sufficient conditions on the degree of dependence, under which the parametric rate can be maintained. To our knowledge, this is the first work analyzing the theoretical performance of PCA for the dependent data in high dimensional settings. Our results strictly generalize the analysis in Han & Liu (2012) and the techniques we used have the separate interest for analyzing a variety of other multivariate statistical methods.en_US
dc.format.extent240 - 248en_US
dc.language.isoen_USen_US
dc.relation.ispartof30th International Conference on Machine Learning, ICMLen_US
dc.rightsAuthor's manuscripten_US
dc.titlePrincipal component analysis on non-gaussian dependent dataen_US
dc.typeConference Articleen_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/conference-proceedingen_US

Files in This Item:
File Description SizeFormat 
AnalysisNonGaussianNonDependData.pdf252 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.