Skip to main content

Families of L-Functions and Their Symmetry

Author(s): Sarnak, Peter C; Shin, Sug Woo; Templier, Nicolas

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1t96w
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSarnak, Peter C-
dc.contributor.authorShin, Sug Woo-
dc.contributor.authorTemplier, Nicolas-
dc.date.accessioned2018-07-20T15:09:00Z-
dc.date.available2018-07-20T15:09:00Z-
dc.date.issued2016en_US
dc.identifier.citationSarnak, Peter, Shin, Sug Woo, Templier, Nicolas. (2016). Families of L-Functions and Their Symmetry. FAMILIES OF AUTOMORPHIC FORMS AND THE TRACE FORMULA, 531 - 578. doi:10.1007/978-3-319-41424-9_13en_US
dc.identifier.issn2365-9564-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1t96w-
dc.description.abstractA few years ago the first-named author proposed a working definition of a family of automorphic L-functions. Then the work by the second and third-named authors on the Sato-Tate equidistribution for families made it possible to give a conjectural answer for the universality class introduced by Katz and the first-named author for the distribution of the zeros near s = 1/2. In this article we develop these ideas fully after introducing some structural invariants associated to the arithmetic statistics of a family.en_US
dc.format.extent531 - 578en_US
dc.language.isoen_USen_US
dc.relation.ispartofFAMILIES OF AUTOMORPHIC FORMS AND THE TRACE FORMULAen_US
dc.relation.ispartofseriesSimons Symposia;-
dc.rightsAuthor's manuscripten_US
dc.titleFamilies of L-Functions and Their Symmetryen_US
dc.typeConference Articleen_US
dc.identifier.doidoi:10.1007/978-3-319-41424-9_13-
dc.date.eissued2016-09-21en_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/conference-proceedingen_US

Files in This Item:
File Description SizeFormat 
1401.5507.pdf552.62 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.