Skip to main content

ON THE LOCAL EXTENSION OF KILLING VECTOR-FIELDS IN RICCI FLAT MANIFOLDS

Author(s): Ionescu, Alexandru D; Klainerman, Sergiu

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1t942
Full metadata record
DC FieldValueLanguage
dc.contributor.authorIonescu, Alexandru D-
dc.contributor.authorKlainerman, Sergiu-
dc.date.accessioned2017-11-21T19:42:48Z-
dc.date.available2017-11-21T19:42:48Z-
dc.date.issued2013-04en_US
dc.identifier.citationIonescu, Alexandru D, Klainerman, Sergiu. (2013). ON THE LOCAL EXTENSION OF KILLING VECTOR-FIELDS IN RICCI FLAT MANIFOLDS. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 26 (563 - 593en_US
dc.identifier.issn0894-0347-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1t942-
dc.description.abstractWe revisit the extension problem for Killing vector-fields in smooth Ricci flat manifolds, and its relevance to the black hole rigidity problem. We prove both a stronger version of the main local extension result established earlier, as well as two types of results concerning non-extendibility. In particular, we show that one can find local, stationary, vacuum extensions of a Kerr solution $ \mathcal {K}(m,a)$, $ 0<a<m$, in a future neighborhood of any point $ p$ of the past horizon lying outside both the bifurcation sphere and the axis of symmetry, which admit no extension of the Hawking vector-field of $ \mathcal {K}(m,a)$. This result illustrates one of the major difficulties one faces in trying to extend Hawking's rigidity result to the more realistic setting of smooth stationary solutions of the Einstein vacuum equations; unlike in the analytic situation, one cannot hope to construct an additional symmetry of stationary solutions (as in Hawking's Rigidity Theorem) by relying only on local information.en_US
dc.format.extent563 - 593en_US
dc.language.isoenen_US
dc.relation.ispartofJOURNAL OF THE AMERICAN MATHEMATICAL SOCIETYen_US
dc.rightsAuthor's manuscripten_US
dc.titleON THE LOCAL EXTENSION OF KILLING VECTOR-FIELDS IN RICCI FLAT MANIFOLDSen_US
dc.typeJournal Articleen_US
dc.date.eissued2012-11-14en_US
dc.identifier.eissn1088-6834-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1108.3575v1.pdf302.04 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.