Skip to main content

Entanglement Phase Transitions in Measurement-Only Dynamics

Author(s): Ippoliti, Matteo; Gullans, Michael J; Gopalakrishnan, Sarang; Huse, David A; Khemani, Vedika

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1t43j24z
Abstract: Unitary circuits subject to repeated projective measurements can undergo an entanglement phase transition (EPT) as a function of the measurement rate. This transition is generally understood in terms of a competition between the scrambling effects of unitary dynamics and the disentangling effects of measurements. We find that, surprisingly, EPTs are possible even in the absence of scrambling unitary dynamics, where they are best understood as arising from measurements alone. This finding motivates us to introduce measurement-only models, in which the “scrambling” and “unscrambling” effects driving the EPT are fundamentally intertwined and cannot be attributed to physically distinct processes. These models represent a novel form of an EPT, conceptually distinct from that in hybrid unitary-projective circuits. We explore the entanglement phase diagrams, critical points, and quantum code properties of some of these measurement-only models. We find that the principle driving the EPTs in these models is frustration, or mutual incompatibility, of the measurements. Surprisingly, an entangling (volume-law) phase is the generic outcome when measuring sufficiently long but still local (greater than or similar to 3-body) operators. We identify a class of exceptions to this behavior (”bipartite ensembles”) which cannot sustain an entangling phase but display dual area-law phases, possibly with different kinds of quantum order, separated by self-dual critical points. Finally, we introduce a measure of information spreading in dynamics with measurements and use it to demonstrate the emergence of a statistical light cone, despite the nonlocality inherent to quantum measurements.
Publication Date: 15-Feb-2021
Electronic Publication Date: 15-Feb-2021
Citation: Ippoliti, Matteo, Gullans, Michael J, Gopalakrishnan, Sarang, Huse, David A, Khemani, Vedika. (2021). Entanglement Phase Transitions in Measurement-Only Dynamics. PHYSICAL REVIEW X, 11 (10.1103/PhysRevX.11.011030
DOI: doi:10.1103/PhysRevX.11.011030
ISSN: 2160-3308
Type of Material: Journal Article
Journal/Proceeding Title: PHYSICAL REVIEW X
Version: Final published version. This is an open access article.



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.