Skip to main content

Matrix regularizing effects of Gaussian perturbations

Author(s): Aizenman, Michael; Peled, Ron; Schenker, Jeffrey; Shamis, Mira; Sodin, Sasha

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1t42b
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAizenman, Michael-
dc.contributor.authorPeled, Ron-
dc.contributor.authorSchenker, Jeffrey-
dc.contributor.authorShamis, Mira-
dc.contributor.authorSodin, Sasha-
dc.date.accessioned2019-05-30T15:59:37Z-
dc.date.available2019-05-30T15:59:37Z-
dc.date.issued2017-06en_US
dc.identifier.citationAizenman, Michael, Peled, Ron, Schenker, Jeffrey, Shamis, Mira, Sodin, Sasha. (2017). Matrix regularizing effects of Gaussian perturbations. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 19 (10.1142/S0219199717500286en_US
dc.identifier.issn0219-1997-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1t42b-
dc.description.abstractThe addition of noise has a regularizing effect on Hermitian matrices. This effect is studied here for H = A + V, where A is the base matrix and V is sampled from the GOE or the GUE random matrix ensembles. We bound the mean number of eigenvalues of H in an interval, and present tail bounds for the distribution of the Frobenius and operator norms of H-1 and for the distribution of the norm of H-1 applied to a fixed vector. The bounds are uniform in A and exceed the actual suprema by no more than multiplicative constants. The probability of multiple eigenvalues in an interval is also estimated.en_US
dc.language.isoen_USen_US
dc.relation.ispartofCOMMUNICATIONS IN CONTEMPORARY MATHEMATICSen_US
dc.rightsAuthor's manuscripten_US
dc.titleMatrix regularizing effects of Gaussian perturbationsen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1142/S0219199717500286-
dc.date.eissued2017-03-09en_US
dc.identifier.eissn1793-6683-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1509.01799v4.pdf277.26 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.