Skip to main content

L-spaces, taut foliations, and graph manifolds

Author(s): Hanselman, Jonathan; Rasmussen, Jacob; Rasmussen, Sarah Dean; Watson, Liam

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1sq8qh76
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHanselman, Jonathan-
dc.contributor.authorRasmussen, Jacob-
dc.contributor.authorRasmussen, Sarah Dean-
dc.contributor.authorWatson, Liam-
dc.date.accessioned2023-12-27T18:47:10Z-
dc.date.available2023-12-27T18:47:10Z-
dc.date.issued2020-03en_US
dc.identifier.citationHanselman, Jonathan, Rasmussen, Jacob, Rasmussen, Sarah Dean, Watson, Liam. (2020). L-spaces, taut foliations, and graph manifolds. COMPOSITIO MATHEMATICA, 156 (604 - 612. doi:10.1112/S0010437X19007814en_US
dc.identifier.issn0010-437X-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1sq8qh76-
dc.description.abstractIf Y is a closed orientable graph manifold, we show that Y admits a coorientable taut foliation if and only if Y is not an L-space. Combined with previous work of Boyer and Clay, this implies that Y is an L-space if and only if pi(1)(Y) is not left-orderable.en_US
dc.format.extent604 - 612en_US
dc.language.isoen_USen_US
dc.relation.ispartofCOMPOSITIO MATHEMATICAen_US
dc.rightsAuthor's manuscripten_US
dc.titleL-spaces, taut foliations, and graph manifoldsen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1112/S0010437X19007814-
dc.date.eissued2020-01-23en_US
dc.identifier.eissn1570-5846-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1508.05911.pdf328.06 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.