L-spaces, taut foliations, and graph manifolds
Author(s): Hanselman, Jonathan; Rasmussen, Jacob; Rasmussen, Sarah Dean; Watson, Liam
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1sq8qh76
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hanselman, Jonathan | - |
dc.contributor.author | Rasmussen, Jacob | - |
dc.contributor.author | Rasmussen, Sarah Dean | - |
dc.contributor.author | Watson, Liam | - |
dc.date.accessioned | 2023-12-27T18:47:10Z | - |
dc.date.available | 2023-12-27T18:47:10Z | - |
dc.date.issued | 2020-03 | en_US |
dc.identifier.citation | Hanselman, Jonathan, Rasmussen, Jacob, Rasmussen, Sarah Dean, Watson, Liam. (2020). L-spaces, taut foliations, and graph manifolds. COMPOSITIO MATHEMATICA, 156 (604 - 612. doi:10.1112/S0010437X19007814 | en_US |
dc.identifier.issn | 0010-437X | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1sq8qh76 | - |
dc.description.abstract | If Y is a closed orientable graph manifold, we show that Y admits a coorientable taut foliation if and only if Y is not an L-space. Combined with previous work of Boyer and Clay, this implies that Y is an L-space if and only if pi(1)(Y) is not left-orderable. | en_US |
dc.format.extent | 604 - 612 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | COMPOSITIO MATHEMATICA | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | L-spaces, taut foliations, and graph manifolds | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1112/S0010437X19007814 | - |
dc.date.eissued | 2020-01-23 | en_US |
dc.identifier.eissn | 1570-5846 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1508.05911.pdf | 328.06 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.