Modeling flocks and prices: Jumping particles with an attractive interaction
Author(s): Balázs, M; Rácz, Miklos Z; Tóth, B
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1sp3g
Abstract: | We introduce and investigate a new model of a finite number of particles jumping forward on the real line. The jump lengths are independent of everything, but the jump rate of each particle depends on the relative position of the particle compared to the center of mass of the system. The rates are higher for those left behind, and lower for those ahead of the center of mass, providing an attractive interaction keeping the particles together. We prove that in the fluid limit, as the number of particles goes to infinity, the evolution of the system is described by a mean field equation that exhibits traveling wave solutions. A connection to extreme value statistics is also provided. © Association des Publications de l'Institut Henri Poincaré, 2014. |
Publication Date: | 1-Jan-2014 |
Citation: | Balázs, M, Rácz, MZ, Tóth, B. (2014). Modeling flocks and prices: Jumping particles with an attractive interaction. Annales de l'institut Henri Poincare (B) Probability and Statistics, 50 (2), 425 - 454. doi:10.1214/12-AIHP512 |
DOI: | doi:10.1214/12-AIHP512 |
ISSN: | 0246-0203 |
Pages: | 425 - 454 |
Type of Material: | Journal Article |
Journal/Proceeding Title: | Annales de l'institut Henri Poincare (B) Probability and Statistics |
Version: | Author's manuscript |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.