Skip to main content

SPATIALLY OFFSET ACTIVE GALACTIC NUCLEI. I. SELECTION AND SPECTROSCOPIC PROPERTIES

Author(s): Barrows, R Scott; Comerford, Julia M; Greene, Jenny E.; Pooley, David

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1sm96
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBarrows, R Scott-
dc.contributor.authorComerford, Julia M-
dc.contributor.authorGreene, Jenny E.-
dc.contributor.authorPooley, David-
dc.date.accessioned2019-10-09T19:32:57Z-
dc.date.available2019-10-09T19:32:57Z-
dc.date.issued2016-09-20en_US
dc.identifier.citationBarrows, R Scott, Comerford, Julia M, Greene, Jenny E, Pooley, David. (2016). SPATIALLY OFFSET ACTIVE GALACTIC NUCLEI. I. SELECTION AND SPECTROSCOPIC PROPERTIES. ASTROPHYSICAL JOURNAL, 829 (10.3847/0004-637X/829/1/37en_US
dc.identifier.issn0004-637X-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1sm96-
dc.description.abstractWe present a sample of 18 optically selected and X-ray-detected spatially offset active galactic nuclei (AGNs) from the Sloan Digital Sky Survey (SDSS). In nine systems, the X-ray active galactic nucleus (AGN) is spatially offset from the galactic stellar core that is located within the 3 ‘’ diameter SDSS spectroscopic fiber. In 11. systems, the X-ray AGN is spatially offset from a stellar core that is located outside the fiber, with an overlap of two. To build the sample, we cross-matched Type II AGNs selected from the SDSS galaxy catalog with archival Chandra imaging and employed our custom astrometric and registration procedure. The projected angular (physical) offsets span a range of 0.” 6 (0.8 kpc) to 17.” 4 (19.4 kpc), with a median value of 2.” 7 (4.6 kpc). The offset nature of an AGN is an unambiguous signature of a galaxy merger, and these systems can be used to study the properties of AGNs in galaxy mergers without the biases introduced by morphological merger selection techniques. In this paper (Paper I), we use our sample to assess the kinematics of AGN photoionized gas in galaxy mergers. We find that spectroscopic offset AGN selection may be up to 89(-16)(+7) % incomplete due to small projected velocity offsets. We also find that the magnitude of the velocity offsets are generally larger than expected if our spatial selection introduces a bias toward face-on orbits, suggesting the presence of complex kinematics in the emission line gas of AGNs in galaxy mergers.en_US
dc.language.isoen_USen_US
dc.relationhttps://ui.adsabs.harvard.edu/abs/2016ApJ...829...37B/abstracten_US
dc.relation.ispartofASTROPHYSICAL JOURNALen_US
dc.rightsFinal published version. Article is made available in OAR by the publisher's permission or policy.en_US
dc.titleSPATIALLY OFFSET ACTIVE GALACTIC NUCLEI. I. SELECTION AND SPECTROSCOPIC PROPERTIESen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.3847/0004-637X/829/1/37-
dc.date.eissued2016-09-20en_US
dc.identifier.eissn1538-4357-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Barrows_2016_ApJ_829_37.pdf4.76 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.