Skip to main content

On the averaged Colmez conjecture

Author(s): Yuan, Xinyi; Zhang, Shou-Wu

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1sm44
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYuan, Xinyi-
dc.contributor.authorZhang, Shou-Wu-
dc.date.accessioned2019-04-05T20:20:08Z-
dc.date.available2019-04-05T20:20:08Z-
dc.date.issued2018en_US
dc.identifier.citationYuan, Xinyi, Zhang, Shou-Wu. (2018). On the averaged Colmez conjecture. ANNALS OF MATHEMATICS, 187 (533 - 638). doi:10.4007/annals.2018.187.2.4en_US
dc.identifier.issn0003-486X-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1sm44-
dc.description.abstractThe Colmez conjecture is a formula expressing the Faltings height of an abelian variety with complex multiplication in terms of some linear combination of logarithmic derivatives of Artin L-functions. The aim of this paper to prove an averaged version of the conjecture, which was also proposed by Colmez.en_US
dc.format.extent533 - 638en_US
dc.languageEnglishen_US
dc.language.isoen_USen_US
dc.relation.ispartofANNALS OF MATHEMATICSen_US
dc.rightsAuthor's manuscripten_US
dc.titleOn the averaged Colmez conjectureen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.4007/annals.2018.187.2.4-
dc.identifier.eissn1939-8980-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1507.06903v1.pdf793 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.