Skip to main content

Fractional quantum Hall bilayers at half filling: Tunneling-driven non-Abelian phase

Author(s): Zhu, W; Liu, Zhao; Haldane, Frederick D; Sheng, DN

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1sh3k
Abstract: Multicomponent quantum Hall systems with internal degrees of freedom provide a fertile ground for the emergence of exotic quantum liquids. Here, we investigate the possibility of non-Abelian topological order in the half-filled fractional quantum Hall (FQH) bilayer system driven by the tunneling effect between two layers. By means of the state-of-the-art density-matrix renormalization group, we unveil “fingerprint” evidence of the non-Abelian Moore-Read Pfaffian state emerging in the intermediate-tunneling regime, including the ground-state degeneracy on the torus geometry and the topological entanglement spectroscopy (entanglement spectrum and topological entanglement entropy) on the spherical geometry, respectively. Remarkably, the phase transition from the previously identified Abelian (331) Halperin state to the non-Abelian Moore-Read Pfaffian state is determined to be continuous, which is signaled by the continuous evolution of the universal part of the entanglement spectrum, and discontinuities in the excitation gap and the derivative of the ground-state energy. Our results not only provide a “proof-of-principle” demonstration of realizing a non-Abelian state through coupling different degrees of freedom, but also open up a possibility in FQH bilayer systems for detecting different chiral p-wave pairing states.
Publication Date: 15-Dec-2016
Electronic Publication Date: 30-Dec-2016
Citation: Zhu, W, Liu, Zhao, Haldane, FDM, Sheng, DN. (2016). Fractional quantum Hall bilayers at half filling: Tunneling-driven non-Abelian phase. PHYSICAL REVIEW B, 94 (10.1103/PhysRevB.94.245147
DOI: doi:10.1103/PhysRevB.94.245147
ISSN: 2469-9950
EISSN: 2469-9969
Type of Material: Journal Article
Journal/Proceeding Title: PHYSICAL REVIEW B
Version: Final published version. This is an open access article.



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.