Evolutionary game dynamics of controlled and automatic decision-making
Author(s): Toupo, Danielle F.P.; Strogatz, Steven H.; Cohen, Jonathan D.; Rand, David G.
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1s74z
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Toupo, Danielle F.P. | - |
dc.contributor.author | Strogatz, Steven H. | - |
dc.contributor.author | Cohen, Jonathan D. | - |
dc.contributor.author | Rand, David G. | - |
dc.date.accessioned | 2019-10-28T15:53:53Z | - |
dc.date.available | 2019-10-28T15:53:53Z | - |
dc.date.issued | 2015-07 | en_US |
dc.identifier.citation | Toupo, Danielle FP, Strogatz, Steven H, Cohen, Jonathan D, Rand, David G. (2015). Evolutionary game dynamics of controlled and automatic decision-making. Chaos: An Interdisciplinary Journal of Nonlinear Science, 25 (7), 073120 - 073120. doi:10.1063/1.4927488 | en_US |
dc.identifier.issn | 1054-1500 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1s74z | - |
dc.description.abstract | We integrate dual-process theories of human cognition with evolutionary game theory to study the evolution of automatic and controlled decision-making processes. We introduce a model where agents who make decisions using either automatic or controlled processing compete with each other for survival. Agents using automatic processing act quickly and so are more likely to acquire resources, but agents using controlled processing are better planners and so make more effective use of the resources they have. Using the replicator equation, we characterize the conditions under which automatic or controlled agents dominate, when coexistence is possible, and when bistability occurs. We then extend the replicator equation to consider feedback between the state of the population and the environment. Under conditions where having a greater proportion of controlled agents either enriches the environment or enhances the competitive advantage of automatic agents, we find that limit cycles can occur, leading to persistent oscillations in the population dynamics. Critically, however, these limit cycles only emerge when feedback occurs on a sufficiently long time scale. Our results shed light on the connection between evolution and human cognition, and demonstrate necessary conditions for the rise and fall of rationality | en_US |
dc.format.extent | 073120 - 073120 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | Chaos: An Interdisciplinary Journal of Nonlinear Science | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | Evolutionary game dynamics of controlled and automatic decision-making | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1063/1.4927488 | - |
dc.identifier.eissn | 1089-7682 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1.4927488.pdf | 2.45 MB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.